Mathematics
         
语言:中文    Language:English
On line Solution of Monovariate Equation:
    Input any unary equation directly, and then click the "Next" button to obtain the solution of the equation.
    It supports equations that contain mathematical functions.
    Current location:Equations > Monovariate Equation > The history of univariate equation calculation > Answer

    Overview: 1 questions will be solved this time.Among them
           ☆1 equations

[ 1/1 Equation]
    Work: Find the solution of equation (3x+4)(3x-4)-(2x+3)(3x-2) = 0 .
    Question type: Equation
    Solution:Original question:
     (3 x + 4)(3 x 4)(2 x + 3)(3 x 2) = 0
    Remove the bracket on the left of the equation:
     Left side of the equation = 3 x (3 x 4) + 4(3 x 4)(2 x + 3)(3 x 2)
                                             = 3 x × 3 x 3 x × 4 + 4(3 x 4)(2 x + 3)(3 x 2)
                                             = 9 x x 12 x + 4(3 x 4)(2 x + 3)(3 x 2)
                                             = 9 x x 12 x + 4 × 3 x 4 × 4(2 x + 3)(3 x 2)
                                             = 9 x x 12 x + 12 x 16(2 x + 3)(3 x 2)
                                             = 9 x x 0 x 16(2 x + 3)(3 x 2)
                                             = 9 x x 0 x 162 x (3 x 2)3(3 x 2)
                                             = 9 x x 0 x 162 x × 3 x + 2 x
                                             = 9 x x 0 x 166 x x + 4 x 3
                                             = 9 x x + 4 x 166 x x 3(3 x 2)
                                             = 9 x x + 4 x 166 x x 3 × 3 x
                                             = 9 x x + 4 x 166 x x 9 x + 6
                                             = 9 x x 5 x 106 x x
    The equation is transformed into :
     9 x x 5 x 106 x x = 0

    The solution of the equation:
        x1≈-1.173599 , keep 6 decimal places
        x2≈2.840266 , keep 6 decimal places
    
    There are 2 solution(s).


解程的详细方法请参阅:《方程的解法》



Your problem has not been solved here? Please go to the Hot Problems section!





  New addition:Lenders ToolBox module(Specific location:Math OP > Lenders ToolBox ),welcome。