Mathematics
         
语言:中文    Language:English
On line Solution of Monovariate Equation:
    Input any unary equation directly, and then click the "Next" button to obtain the solution of the equation.
    It supports equations that contain mathematical functions.
    Current location:Equations > Monovariate Equation > The history of univariate equation calculation > Answer

    Overview: 1 questions will be solved this time.Among them
           ☆1 equations

[ 1/1 Equation]
    Work: Find the solution of equation x/(x+1)+(x+1)/(x+2)+(x+2)/(x+3) = 1 .
    Question type: Equation
    Solution:Original question:
      x ÷ ( x + 1) + ( x + 1) ÷ ( x + 2) + ( x + 2) ÷ ( x + 3) = 1
     Multiply both sides of the equation by:( x + 1)
      x + ( x + 1) ÷ ( x + 2) × ( x + 1) + ( x + 2) ÷ ( x + 3) × ( x + 1) = 1( x + 1)
    Remove a bracket on the left of the equation::
      x + x ÷ ( x + 2) × ( x + 1) + 1 ÷ ( x + 2) × ( x + 1) + ( x + 2) ÷ ( x + 3) × ( x + 1) = 1( x + 1)
    Remove a bracket on the right of the equation::
      x + x ÷ ( x + 2) × ( x + 1) + 1 ÷ ( x + 2) × ( x + 1) + ( x + 2) ÷ ( x + 3) × ( x + 1) = 1 x + 1 × 1
    The equation is reduced to :
      x + x ÷ ( x + 2) × ( x + 1) + 1 ÷ ( x + 2) × ( x + 1) + ( x + 2) ÷ ( x + 3) × ( x + 1) = 1 x + 1
     Multiply both sides of the equation by:( x + 2)
      x ( x + 2) + x ( x + 1) + 1( x + 1) + ( x + 2) ÷ ( x + 3) × ( x + 1)( x + 2) = 1 x ( x + 2) + 1( x + 2)
    Remove a bracket on the left of the equation:
      x x + x × 2 + x ( x + 1) + 1( x + 1) + ( x + 2) ÷ ( x + 3) × ( x + 1)( x + 2) = 1 x ( x + 2) + 1( x + 2)
    Remove a bracket on the right of the equation::
      x x + x × 2 + x ( x + 1) + 1( x + 1) + ( x + 2) ÷ ( x + 3) × ( x + 1)( x + 2) = 1 x x + 1 x × 2 + 1( x + 2)
    The equation is reduced to :
      x x + x × 2 + x ( x + 1) + 1( x + 1) + ( x + 2) ÷ ( x + 3) × ( x + 1)( x + 2) = 1 x x + 2 x + 1( x + 2)
     Multiply both sides of the equation by:( x + 3)
      x x ( x + 3) + 2 x ( x + 3) + x ( x + 1)( x + 3) + 1( x + 1)( x + 3) = 1 x x ( x + 3) + 2 x ( x + 3) + 1( x + 2)( x + 3)
    Remove a bracket on the left of the equation:
      x x x + x x × 3 + 2 x ( x + 3) + x ( x + 1)( x + 3) = 1 x x ( x + 3) + 2 x ( x + 3) + 1( x + 2)( x + 3)
    Remove a bracket on the right of the equation::
      x x x + x x × 3 + 2 x ( x + 3) + x ( x + 1)( x + 3) = 1 x x x + 1 x x × 3 + 2 x ( x + 3) + 1
    The equation is reduced to :
      x x x + x x × 3 + 2 x ( x + 3) + x ( x + 1)( x + 3) = 1 x x x + 3 x x + 2 x ( x + 3) + 1( x + 2)
    Remove a bracket on the left of the equation:
      x x x + x x × 3 + 2 x x + 2 x × 3 = 1 x x x + 3 x x + 2 x ( x + 3) + 1( x + 2)
    Remove a bracket on the right of the equation::
      x x x + x x × 3 + 2 x x + 2 x × 3 = 1 x x x + 3 x x + 2 x x + 2 x
    The equation is reduced to :
      x x x + x x × 3 + 2 x x + 6 x + x = 1 x x x + 3 x x + 2 x x + 6 x
    Remove a bracket on the left of the equation:
      x x x + x x × 3 + 2 x x + 6 x + x = 1 x x x + 3 x x + 2 x x + 6 x
    Remove a bracket on the right of the equation::
      x x x + x x × 3 + 2 x x + 6 x + x = 1 x x x + 3 x x + 2 x x + 6 x
    The equation is reduced to :
      x x x + x x × 3 + 2 x x + 6 x + x = 1 x x x + 3 x x + 2 x x + 6 x
    Remove a bracket on the left of the equation:
      x x x + x x × 3 + 2 x x + 6 x + x = 1 x x x + 3 x x + 2 x x + 6 x
    Remove a bracket on the right of the equation::
      x x x + x x × 3 + 2 x x + 6 x + x = 1 x x x + 3 x x + 2 x x + 6 x
    The equation is reduced to :
      x x x + x x × 3 + 2 x x + 6 x + x = 1 x x x + 3 x x + 2 x x + 6 x
    The equation is reduced to :
      x x x + x x × 3 + 2 x x + 6 x + x = 1 x x x + 3 x x + 2 x x + 9 x

    The solution of the equation:
        x1≈-2.744644 , keep 6 decimal places
        x2≈-1.644584 , keep 6 decimal places
        x3≈-0.110771 , keep 6 decimal places
    
    There are 3 solution(s).


解程的详细方法请参阅:《方程的解法》



Your problem has not been solved here? Please go to the Hot Problems section!





  New addition:Lenders ToolBox module(Specific location:Math OP > Lenders ToolBox ),welcome。