Mathematics
         
语言:中文    Language:English
On line Solution of Monovariate Equation:
    Input any unary equation directly, and then click the "Next" button to obtain the solution of the equation.
    It supports equations that contain mathematical functions.
    Current location:Equations > Monovariate Equation > The history of univariate equation calculation > Answer

    Overview: 1 questions will be solved this time.Among them
           ☆1 equations

[ 1/1 Equation]
    Work: Find the solution of equation 161617262/(x+2) = 183837372/(x+1) .
    Question type: Equation
    Solution:Original question:
     161617262 ÷ ( x + 2) = 183837372 ÷ ( x + 1)
     Multiply both sides of the equation by:( x + 2) ,  ( x + 1)
     161617262( x + 1) = 183837372( x + 2)
    Remove a bracket on the left of the equation::
     161617262 x + 161617262 × 1 = 183837372( x + 2)
    Remove a bracket on the right of the equation::
     161617262 x + 161617262 × 1 = 183837372 x + 183837372 × 2
    The equation is reduced to :
     161617262 x + 161617262 = 183837372 x + 367674744

    Transposition :
     161617262 x 183837372 x = 367674744161617262

    Combine the items on the left of the equation:
      - 22220110 x = 367674744161617262

    Combine the items on the right of the equation:
      - 22220110 x = 206057482

    By shifting the terms and changing the symbols on toth sides of the equation, we obtain :
      - 206057482 = 22220110 x

    If the left side of the equation is equal to the right side, then the right side must also be equal to the left side, that is :
     22220110 x = - 206057482

    The coefficient of the unknown number is reduced to 1 :
      x = - 206057482 ÷ 22220110
        = - 206057482 ×
1
22220110
        = - 103028741 ×
1
11110055

    We obtained :
      x = -
103028741
11110055
    This is the solution of the equation.

    Convert the result to decimal form :
      x = - 9.273468



Your problem has not been solved here? Please go to the Hot Problems section!





  New addition:Lenders ToolBox module(Specific location:Math OP > Lenders ToolBox ),welcome。