Mathematics
         
语言:中文    Language:English
On line Solution of Monovariate Equation:
    Input any unary equation directly, and then click the "Next" button to obtain the solution of the equation.
    It supports equations that contain mathematical functions.
    Current location:Equations > Monovariate Equation > The history of univariate equation calculation > Answer

    Overview: 1 questions will be solved this time.Among them
           ☆1 equations

[ 1/1 Equation]
    Work: Find the solution of equation (303.99-y)/1.09*0.09+y/1.03*0.03 = 19.29 .
    Question type: Equation
    Solution:Original question:
     (
30399
100
y ) ÷
109
100
×
9
100
+ y ÷
103
100
×
3
100
=
1929
100
     Left side of the equation = (
30399
100
y ) ×
9
109
+ y ×
3
103
    The equation is transformed into :
     (
30399
100
y ) ×
9
109
+
3
103
y =
1929
100
    Remove the bracket on the left of the equation:
     Left side of the equation =
30399
100
×
9
109
y ×
9
109
+
3
103
y
                                             =
273591
10900
y ×
9
109
+
3
103
y
                                             =
273591
10900
600
11227
y
    The equation is transformed into :
     
273591
10900
600
11227
y =
1929
100

    Transposition :
      -
600
11227
y =
1929
100
273591
10900

    Combine the items on the right of the equation:
      -
600
11227
y = -
6333
1090

    By shifting the terms and changing the symbols on toth sides of the equation, we obtain :
     
6333
1090
=
600
11227
y

    If the left side of the equation is equal to the right side, then the right side must also be equal to the left side, that is :
     
600
11227
y =
6333
1090

    The coefficient of the unknown number is reduced to 1 :
      y =
6333
1090
÷
600
11227
        =
6333
1090
×
11227
600
        =
2111
1090
×
11227
200

    We obtained :
      y =
23700197
218000
    This is the solution of the equation.

    By reducing fraction, we can get:
      y =
217433
2000

    Convert the result to decimal form :
      y = 108.7165



Your problem has not been solved here? Please go to the Hot Problems section!





  New addition:Lenders ToolBox module(Specific location:Math OP > Lenders ToolBox ),welcome。