Mathematics
         
语言:中文    Language:English
On line Solution of Monovariate Equation:
    Input any unary equation directly, and then click the "Next" button to obtain the solution of the equation.
    It supports equations that contain mathematical functions.
    Current location:Equations > Monovariate Equation > The history of univariate equation calculation > Answer

    Overview: 1 questions will be solved this time.Among them
           ☆1 equations

[ 1/1 Equation]
    Work: Find the solution of equation (3/31)*2%+(28/31)*(1.5%P+(1-P)2% ) = 1.89% .
    Question type: Equation
    Solution:Original question:
     (3 ÷ 31) ×
2
100
+ (28 ÷ 31)(
3
200
P + (1 P ) ×
2
100
) =
189
10000
    Remove the bracket on the left of the equation:
     Left side of the equation = 3 ÷ 31 ×
2
100
+ (28 ÷ 31)(
3
200
P + (1 P ) ×
2
100
)
                                             =
3
1550
+ (28 ÷ 31)(
3
200
P + (1 P ) ×
2
100
)
                                             =
3
1550
+ 28 ÷ 31 × (
3
200
P + (1 P ) ×
2
100
)
                                             =
3
1550
+
28
31
(
3
200
P + (1 P ) ×
2
100
)
                                             =
3
1550
+
28
31
×
3
200
P +
28
31
(1 P ) ×
2
100
                                             =
3
1550
+
21
1550
P +
14
775
(1 P )
                                             =
3
1550
+
21
1550
P +
14
775
× 1
14
775
P
                                             =
3
1550
+
21
1550
P +
14
775
14
775
P
                                             =
1
50
7
1550
P
    The equation is transformed into :
     
1
50
7
1550
P =
189
10000

    Transposition :
      -
7
1550
P =
189
10000
1
50

    Combine the items on the right of the equation:
      -
7
1550
P = -
11
10000

    By shifting the terms and changing the symbols on toth sides of the equation, we obtain :
     
11
10000
=
7
1550
P

    If the left side of the equation is equal to the right side, then the right side must also be equal to the left side, that is :
     
7
1550
P =
11
10000

    The coefficient of the unknown number is reduced to 1 :
      P =
11
10000
÷
7
1550
        =
11
10000
×
1550
7
        =
11
200
×
31
7

    We obtained :
      P =
341
1400
    This is the solution of the equation.

    Convert the result to decimal form :
      P = 0.243571



Your problem has not been solved here? Please go to the Hot Problems section!





  New addition:Lenders ToolBox module(Specific location:Math OP > Lenders ToolBox ),welcome。