Mathematics
         
语言:中文    Language:English
On line Solution of Monovariate Equation:
    Input any unary equation directly, and then click the "Next" button to obtain the solution of the equation.
    It supports equations that contain mathematical functions.
    Current location:Equations > Monovariate Equation > The history of univariate equation calculation > Answer

    Overview: 1 questions will be solved this time.Among them
           ☆1 equations

[ 1/1 Equation]
    Work: Find the solution of equation (t-5)/(t-3) = (t-3)/(t+3)+1/(t-3) .
    Question type: Equation
    Solution:Original question:
     ( t 5) ÷ ( t 3) = ( t 3) ÷ ( t + 3) + 1 ÷ ( t 3)
     Multiply both sides of the equation by:( t 3) ,  ( t + 3)
     ( t 5)( t + 3) = ( t 3)( t 3) + 1( t + 3)
    Remove a bracket on the left of the equation::
      t ( t + 3)5( t + 3) = ( t 3)( t 3) + 1( t + 3)
    Remove a bracket on the right of the equation::
      t ( t + 3)5( t + 3) = t ( t 3)3( t 3) + 1( t + 3)
    Remove a bracket on the left of the equation:
      t t + t × 35( t + 3) = t ( t 3)3( t 3) + 1( t + 3)
    Remove a bracket on the right of the equation::
      t t + t × 35( t + 3) = t t t × 33( t 3) + 1( t + 3)
    Remove a bracket on the left of the equation:
      t t + 3 t 5 t 5 × 3 = t t 3 t 3( t 3) + 1( t + 3)
    Remove a bracket on the right of the equation::
      t t + 3 t 5 t 5 × 3 = t t 3 t 3 t + 3 × 3 + 1( t + 3)
    The equation is reduced to :
      t t + 3 t 5 t 15 = t t 3 t 3 t + 9 + 1( t + 3)
    The equation is reduced to :
      t t 2 t 15 = t t 6 t + 9 + 1( t + 3)
    Remove a bracket on the right of the equation::
      t t 2 t 15 = t t 6 t + 9 + 1 t + 1 × 3
    The equation is reduced to :
      t t 2 t 15 = t t 6 t + 9 + 1 t + 3
    The equation is reduced to :
      t t 2 t 15 = t t 5 t + 12

    
        t1=9
    
    There are 1 solution(s).


解一元一次方程的详细方法请参阅:《一元一次方程的解法》



Your problem has not been solved here? Please go to the Hot Problems section!





  New addition:Lenders ToolBox module(Specific location:Math OP > Lenders ToolBox ),welcome。