Mathematics
         
语言:中文    Language:English
On line Solution of Monovariate Equation:
    Input any unary equation directly, and then click the "Next" button to obtain the solution of the equation.
    It supports equations that contain mathematical functions.
    Current location:Equations > Monovariate Equation > The history of univariate equation calculation > Answer

    Overview: 1 questions will be solved this time.Among them
           ☆1 equations

[ 1/1 Equation]
    Work: Find the solution of equation (Y×15)/[(Y×15)-(1500+2700)] = 1.25 .
    Question type: Equation
    Solution:Original question:
     ( Y × 15) ÷ (( Y × 15)(1500 + 2700)) =
5
4
     Multiply both sides of the equation by:(( Y × 15)(1500 + 2700))
     ( Y × 15) =
5
4
(( Y × 15)(1500 + 2700))
    Remove a bracket on the left of the equation::
      Y × 15 =
5
4
(( Y × 15)(1500 + 2700))
    Remove a bracket on the right of the equation::
      Y × 15 =
5
4
( Y × 15)
5
4
(1500 + 2700)
    Remove a bracket on the right of the equation::
     15 Y =
5
4
Y × 15
5
4
(1500 + 2700)
    The equation is reduced to :
     15 Y =
75
4
Y
5
4
(1500 + 2700)
    Remove a bracket on the right of the equation::
     15 Y =
75
4
Y
5
4
× 1500
5
4
× 2700
    The equation is reduced to :
     15 Y =
75
4
Y 18753375
    The equation is reduced to :
     15 Y =
75
4
Y 5250

    Transposition :
     15 Y
75
4
Y = - 5250

    Combine the items on the left of the equation:
      -
15
4
Y = - 5250

    By shifting the terms and changing the symbols on toth sides of the equation, we obtain :
     5250 =
15
4
Y

    If the left side of the equation is equal to the right side, then the right side must also be equal to the left side, that is :
     
15
4
Y = 5250

    The coefficient of the unknown number is reduced to 1 :
      Y = 5250 ÷
15
4
        = 5250 ×
4
15
        = 350 × 4

    We obtained :
      Y = 1400
    This is the solution of the equation.



Your problem has not been solved here? Please go to the Hot Problems section!





  New addition:Lenders ToolBox module(Specific location:Math OP > Lenders ToolBox ),welcome。