Mathematics
         
语言:中文    Language:English
On line Solution of Monovariate Equation:
    Input any unary equation directly, and then click the "Next" button to obtain the solution of the equation.
    It supports equations that contain mathematical functions.
    Current location:Equations > Monovariate Equation > The history of univariate equation calculation > Answer

    Overview: 1 questions will be solved this time.Among them
           ☆1 equations

[ 1/1 Equation]
    Work: Find the solution of equation (2032.27/(2003.16/x)+1944.94/(1974.05/x))/2 = x .
    Question type: Equation
    Solution:Original question:
     (
203227
100
÷ (
50079
25
÷ x ) +
97247
50
÷ (
39481
20
÷ x )) ÷ 2 = x
    Remove a bracket on the left of the equation::
     
203227
100
÷ (
50079
25
÷ x ) ÷ 2 +
97247
50
÷ (
39481
20
÷ x ) ÷ 2 = x
    The equation is reduced to :
     
203227
200
÷ (
50079
25
÷ x ) +
97247
100
÷ (
39481
20
÷ x ) = x
     Multiply both sides of the equation by:(
50079
25
÷ x )
     
203227
200
+
97247
100
÷ (
39481
20
÷ 1) × (
50079
25
÷ 1) = 1(
50079
25
÷ 1)
    Remove a bracket on the left of the equation:
     
203227
200
+
97247
100
÷ (
39481
20
÷ 1) ×
50079
25
÷ 1 = 1(
50079
25
÷ 1)
    Remove a bracket on the right of the equation::
     
203227
200
+
97247
100
÷ (
39481
20
÷ 1) ×
50079
25
÷ 1 = 1 ×
50079
25
÷ 1
    The equation is reduced to :
     
203227
200
+
4870032513
2500
÷ (
39481
20
÷ 1) =
50079
25
     Multiply both sides of the equation by:(
39481
20
÷ 1)
     
203227
200
(
39481
20
÷ 1) +
4870032513
2500
=
50079
25
(
39481
20
÷ 1)
    Remove a bracket on the left of the equation:
     
203227
200
×
39481
20
÷ 1 +
4870032513
2500
=
50079
25
(
39481
20
÷ 1)
    Remove a bracket on the right of the equation::
     
203227
200
×
39481
20
÷ 1 +
4870032513
2500
=
50079
25
×
39481
20
÷ 1
    The equation is reduced to :
     
8023605187
4000
+
4870032513
2500
=
1977168999
500
    
    There are 0 solution(s).


解程的详细方法请参阅:《方程的解法》



Your problem has not been solved here? Please go to the Hot Problems section!





  New addition:Lenders ToolBox module(Specific location:Math OP > Lenders ToolBox ),welcome。