Mathematics
         
语言:中文    Language:English
On line Solution of Monovariate Equation:
    Input any unary equation directly, and then click the "Next" button to obtain the solution of the equation.
    It supports equations that contain mathematical functions.
    Current location:Equations > Monovariate Equation > The history of univariate equation calculation > Answer

    Overview: 1 questions will be solved this time.Among them
           ☆1 equations

[ 1/1 Equation]
    Work: Find the solution of equation (2039.3/(2005.42/x)+1937.66/(1971.54/x))/2 = x .
    Question type: Equation
    Solution:Original question:
     (
20393
10
÷ (
100271
50
÷ x ) +
96883
50
÷ (
98577
50
÷ x )) ÷ 2 = x
    Remove a bracket on the left of the equation::
     
20393
10
÷ (
100271
50
÷ x ) ÷ 2 +
96883
50
÷ (
98577
50
÷ x ) ÷ 2 = x
    The equation is reduced to :
     
20393
20
÷ (
100271
50
÷ x ) +
96883
100
÷ (
98577
50
÷ x ) = x
     Multiply both sides of the equation by:(
100271
50
÷ x )
     
20393
20
+
96883
100
÷ (
98577
50
÷ 1) × (
100271
50
÷ 1) = 1(
100271
50
÷ 1)
    Remove a bracket on the left of the equation:
     
20393
20
+
96883
100
÷ (
98577
50
÷ 1) ×
100271
50
÷ 1 = 1(
100271
50
÷ 1)
    Remove a bracket on the right of the equation::
     
20393
20
+
96883
100
÷ (
98577
50
÷ 1) ×
100271
50
÷ 1 = 1 ×
100271
50
÷ 1
    The equation is reduced to :
     
20393
20
+
9714555293
5000
÷ (
98577
50
÷ 1) =
100271
50
     Multiply both sides of the equation by:(
98577
50
÷ 1)
     
20393
20
(
98577
50
÷ 1) +
9714555293
5000
=
100271
50
(
98577
50
÷ 1)
    Remove a bracket on the left of the equation:
     
20393
20
×
98577
50
÷ 1 +
9714555293
5000
=
100271
50
(
98577
50
÷ 1)
    Remove a bracket on the right of the equation::
     
20393
20
×
98577
50
÷ 1 +
9714555293
5000
=
100271
50
×
98577
50
÷ 1
    The equation is reduced to :
     
2010280761
1000
+
9714555293
5000
=
9884414367
2500
    
    There are 0 solution(s).


解程的详细方法请参阅:《方程的解法》



Your problem has not been solved here? Please go to the Hot Problems section!





  New addition:Lenders ToolBox module(Specific location:Math OP > Lenders ToolBox ),welcome。