Mathematics
         
语言:中文    Language:English
On line Solution of Monovariate Equation:
    Input any unary equation directly, and then click the "Next" button to obtain the solution of the equation.
    It supports equations that contain mathematical functions.
    Current location:Equations > Monovariate Equation > The history of univariate equation calculation > Answer

    Overview: 1 questions will be solved this time.Among them
           ☆1 equations

[ 1/1 Equation]
    Work: Find the solution of equation 0.85*(0.22-x)/(0.22+2*x)+(1-0.85)*(1.008-x)/(1.008+2*x) = 0 .
    Question type: Equation
    Solution:Original question:
     
17
20
(
11
50
x ) ÷ (
11
50
+ 2 x ) + (1
17
20
)(
126
125
x ) ÷ (
126
125
+ 2 x ) = 0
     Multiply both sides of the equation by:(
11
50
+ 2 x )
     
17
20
(
11
50
x ) + (1
17
20
)(
126
125
x ) ÷ (
126
125
+ 2 x ) × (
11
50
+ 2 x ) = 0
    Remove a bracket on the left of the equation::
     
17
20
×
11
50
17
20
x + (1
17
20
)(
126
125
x ) ÷ (
126
125
+ 2 x ) × (
11
50
+ 2 x ) = 0
    The equation is reduced to :
     
187
1000
17
20
x + (1
17
20
)(
126
125
x ) ÷ (
126
125
+ 2 x ) × (
11
50
+ 2 x ) = 0
     Multiply both sides of the equation by:(
126
125
+ 2 x )
     
187
1000
(
126
125
+ 2 x )
17
20
x (
126
125
+ 2 x ) + (1
17
20
)(
126
125
x )(
11
50
+ 2 x ) = 0
    Remove a bracket on the left of the equation:
     
187
1000
×
126
125
+
187
1000
× 2 x
17
20
x (
126
125
+ 2 x ) + (1
17
20
)(
126
125
x )(
11
50
+ 2 x ) = 0
    The equation is reduced to :
     
11781
62500
+
187
500
x
17
20
x (
126
125
+ 2 x ) + (1
17
20
)(
126
125
x )(
11
50
+ 2 x ) = 0
    Remove a bracket on the left of the equation:
     
11781
62500
+
187
500
x
17
20
x ×
126
125
17
20
x × 2 x + (1
17
20
)(
126
125
x ) = 0
    The equation is reduced to :
     
11781
62500
+
187
500
x
1071
1250
x
17
10
x x + (1
17
20
)(
126
125
x )(
11
50
+ 2 x ) = 0
    The equation is reduced to :
     
11781
62500
1207
2500
x
17
10
x x + (1
17
20
)(
126
125
x )(
11
50
+ 2 x ) = 0
    Remove a bracket on the left of the equation:
     
11781
62500
1207
2500
x
17
10
x x + 1(
126
125
x )(
11
50
+ 2 x )
17
20
(
126
125
x )(
11
50
+ 2 x ) = 0
    Remove a bracket on the left of the equation:
     
11781
62500
1207
2500
x
17
10
x x + 1 ×
126
125
(
11
50
+ 2 x )1 x (
11
50
+ 2 x ) = 0
    The equation is reduced to :
     
11781
62500
1207
2500
x
17
10
x x +
126
125
(
11
50
+ 2 x )1 x (
11
50
+ 2 x )
17
20
= 0
    Remove a bracket on the left of the equation:
     
11781
62500
1207
2500
x
17
10
x x +
126
125
×
11
50
+
126
125
× 2 x 1 = 0
    The equation is reduced to :
     
11781
62500
1207
2500
x
17
10
x x +
693
3125
+
252
125
x 1 x (
11
50
+ 2 x ) = 0
    The equation is reduced to :
     
25641
62500
+
3833
2500
x
17
10
x x 1 x (
11
50
+ 2 x )
17
20
(
126
125
x )(
11
50
+ 2 x ) = 0
    Remove a bracket on the left of the equation:
     
25641
62500
+
3833
2500
x
17
10
x x 1 x ×
11
50
1 x × 2 = 0
    The equation is reduced to :
     
25641
62500
+
3833
2500
x
17
10
x x
11
50
x 2 x x
17
20
= 0
    The equation is reduced to :
     
25641
62500
+
3283
2500
x
17
10
x x 2 x x
17
20
(
126
125
x )(
11
50
+ 2 x ) = 0
    Remove a bracket on the left of the equation:
     
25641
62500
+
3283
2500
x
17
10
x x 2 x x
17
20
×
126
125
(
11
50
+ 2 x ) = 0
    The equation is reduced to :
     
25641
62500
+
3283
2500
x
17
10
x x 2 x x
1071
1250
(
11
50
+ 2 x ) +
17
20
= 0
    Remove a bracket on the left of the equation:
     
25641
62500
+
3283
2500
x
17
10
x x 2 x x
1071
1250
×
11
50
1071
1250
= 0
    The equation is reduced to :
     
25641
62500
+
3283
2500
x
17
10
x x 2 x x
11781
62500
1071
625
x = 0
    The equation is reduced to :
     
693
3125
1001
2500
x
17
10
x x 2 x x +
17
20
x (
11
50
+ 2 x ) = 0

    The solution of the equation:
        x1≈-0.390583 , keep 6 decimal places
        x2≈0.283883 , keep 6 decimal places
    
    There are 2 solution(s).


解程的详细方法请参阅:《方程的解法》



Your problem has not been solved here? Please go to the Hot Problems section!





  New addition:Lenders ToolBox module(Specific location:Math OP > Lenders ToolBox ),welcome。