Mathematics
         
语言:中文    Language:English
On line Solution of Monovariate Equation:
    Input any unary equation directly, and then click the "Next" button to obtain the solution of the equation.
    It supports equations that contain mathematical functions.
    Current location:Equations > Monovariate Equation > The history of univariate equation calculation > Answer

    Overview: 1 questions will be solved this time.Among them
           ☆1 equations

[ 1/1 Equation]
    Work: Find the solution of equation ((47.8x)+(126*3683)+(126*3336))÷(x+7019) = 112 .
    Question type: Equation
    Solution:Original question:
     ((
239
5
x ) + (126 × 3683) + (126 × 3336)) ÷ ( x + 7019) = 112
     Multiply both sides of the equation by:( x + 7019)
     ((
239
5
x ) + (126 × 3683) + (126 × 3336)) = 112( x + 7019)
    Remove a bracket on the left of the equation::
     (
239
5
x ) + (126 × 3683) + (126 × 3336) = 112( x + 7019)
    Remove a bracket on the right of the equation::
     (
239
5
x ) + (126 × 3683) + (126 × 3336) = 112 x + 112 × 7019
    The equation is reduced to :
     (
239
5
x ) + (126 × 3683) + (126 × 3336) = 112 x + 786128
    Remove a bracket on the left of the equation:
     
239
5
x + (126 × 3683) + (126 × 3336) = 112 x + 786128
    Remove a bracket on the left of the equation:
     
239
5
x + 126 × 3683 + (126 × 3336) = 112 x + 786128
    The equation is reduced to :
     
239
5
x + 464058 + (126 × 3336) = 112 x + 786128
    Remove a bracket on the left of the equation:
     
239
5
x + 464058 + 126 × 3336 = 112 x + 786128
    The equation is reduced to :
     
239
5
x + 464058 + 420336 = 112 x + 786128
    The equation is reduced to :
     
239
5
x + 884394 = 112 x + 786128

    Transposition :
     
239
5
x 112 x = 786128884394

    Combine the items on the left of the equation:
      -
321
5
x = 786128884394

    Combine the items on the right of the equation:
      -
321
5
x = - 98266

    By shifting the terms and changing the symbols on toth sides of the equation, we obtain :
     98266 =
321
5
x

    If the left side of the equation is equal to the right side, then the right side must also be equal to the left side, that is :
     
321
5
x = 98266

    The coefficient of the unknown number is reduced to 1 :
      x = 98266 ÷
321
5
        = 98266 ×
5
321

    We obtained :
      x =
491330
321
    This is the solution of the equation.

    Convert the result to decimal form :
      x = 1530.623053



Your problem has not been solved here? Please go to the Hot Problems section!





  New addition:Lenders ToolBox module(Specific location:Math OP > Lenders ToolBox ),welcome。