Mathematics
         
语言:中文    Language:English
On line Solution of Monovariate Equation:
    Input any unary equation directly, and then click the "Next" button to obtain the solution of the equation.
    It supports equations that contain mathematical functions.
    Current location:Equations > Monovariate Equation > The history of univariate equation calculation > Answer

    Overview: 1 questions will be solved this time.Among them
           ☆1 equations

[ 1/1 Equation]
    Work: Find the solution of equation (1-x)(1+0.96x)[(1-x)+(1+0.96x)] = 0 .
    Question type: Equation
    Solution:Original question:
     (1 x )(1 +
24
25
x )((1 x ) + (1 +
24
25
x )) = 0
    Remove the bracket on the left of the equation:
     Left side of the equation = 1(1 +
24
25
x )((1 x ) + (1 +
24
25
x )) x (1 +
24
25
x )((1 x ) + (1 +
24
25
x ))
                                             = 1 × 1((1 x ) + (1 +
24
25
x )) + 1 ×
24
25
x ((1 x ) + (1 +
24
25
x )) x (1 +
24
25
x )((1 x ) + (1 +
24
25
x ))
                                             = 1((1 x ) + (1 +
24
25
x )) +
24
25
x ((1 x ) + (1 +
24
25
x )) x (1 +
24
25
x )((1 x ) + (1 +
24
25
x ))
                                             = 1(1 x ) + 1(1 +
24
25
x ) +
24
25
x ((1 x ) + (1 +
24
25
x )) x (1 +
24
25
x )((1 x ) + (1 +
24
25
x ))
                                             = 1 × 11 x + 1(1 +
24
25
x ) +
24
25
x ((1 x ) + (1 +
24
25
x )) x (1 +
24
25
x )((1 x ) + (1 +
24
25
x ))
                                             = 11 x + 1(1 +
24
25
x ) +
24
25
x ((1 x ) + (1 +
24
25
x )) x (1 +
24
25
x )((1 x ) + (1 +
24
25
x ))
                                             = 11 x + 1 × 1 + 1 ×
24
25
x +
24
25
x ((1 x ) + (1 +
24
25
x )) x
                                             = 11 x + 1 +
24
25
x +
24
25
x ((1 x ) + (1 +
24
25
x )) x (1 +
24
25
x )((1 x ) + (1 +
24
25
x ))
                                             = 2
1
25
x +
24
25
x ((1 x ) + (1 +
24
25
x )) x (1 +
24
25
x )((1 x ) + (1 +
24
25
x ))
                                             = 2
1
25
x +
24
25
x (1 x ) +
24
25
x (1 +
24
25
x ) x (1 +
24
25
x )((1 x ) + (1 +
24
25
x ))
                                             = 2
1
25
x +
24
25
x × 1
24
25
x x +
24
25
x (1 +
24
25
x )
                                             = 2
1
25
x +
24
25
x
24
25
x x +
24
25
x (1 +
24
25
x ) x
                                             = 2 +
23
25
x
24
25
x x +
24
25
x (1 +
24
25
x ) x (1 +
24
25
x )((1 x ) + (1 +
24
25
x ))
                                             = 2 +
23
25
x
24
25
x x +
24
25
x × 1 +
24
25
x ×
24
25
                                             = 2 +
23
25
x
24
25
x x +
24
25
x +
576
625
x x x
                                             = 2 +
47
25
x
24
25
x x +
576
625
x x x (1 +
24
25
x )((1 x ) + (1 +
24
25
x ))
                                             = 2 +
47
25
x
24
25
x x +
576
625
x x x × 1((1 x ) + (1 +
24
25
x ))
                                             = 2 +
47
25
x
24
25
x x +
576
625
x x x × 1(1 x )
                                             = 2 +
47
25
x
24
25
x x +
576
625
x x x × 1 × 1
                                             = 2 +
47
25
x
24
25
x x +
576
625
x x x × 1 + x
                                             = 2 +
22
25
x
24
25
x x +
576
625
x x + x × 1 x
                                             = 2 +
22
25
x
24
25
x x +
576
625
x x + x × 1 x
                                             = 2 +
22
25
x
24
25
x x +
576
625
x x + x × 1 x
                                             = 2
3
25
x
24
25
x x +
576
625
x x + x × 1 x
                                             = 2
3
25
x
24
25
x x +
576
625
x x + x × 1 x

    After the equation is converted into a general formula, there is a common factor:
    ( x - 1 )( x - 50 )
    From
        x - 1 = 0
        x - 50 = 0

    it is concluded that::
        x1=1
        x2=50

    Solutions that cannot be obtained by factorization:
        x3≈-1.041667 , keep 6 decimal places
    
    There are 3 solution(s).


解程的详细方法请参阅:《方程的解法》



Your problem has not been solved here? Please go to the Hot Problems section!





  New addition:Lenders ToolBox module(Specific location:Math OP > Lenders ToolBox ),welcome。