Mathematics
         
语言:中文    Language:English
On line Solution of Monovariate Equation:
    Input any unary equation directly, and then click the "Next" button to obtain the solution of the equation.
    It supports equations that contain mathematical functions.
    Current location:Equations > Monovariate Equation > The history of univariate equation calculation > Answer

    Overview: 1 questions will be solved this time.Among them
           ☆1 equations

[ 1/1 Equation]
    Work: Find the solution of equation ((0.95+1.55)*0.95+y)1.02 = 1+y+1.55 .
    Question type: Equation
    Solution:Original question:
     ((
19
20
+
31
20
) ×
19
20
+ y ) ×
51
50
= 1 + y +
31
20
    Remove the bracket on the left of the equation:
     Left side of the equation = (
19
20
+
31
20
) ×
19
20
×
51
50
+ y ×
51
50
                                             = (
19
20
+
31
20
) ×
969
1000
+ y ×
51
50
                                             =
19
20
×
969
1000
+
31
20
×
969
1000
+
51
50
y
                                             =
18411
20000
+
30039
20000
+
51
50
y
                                             =
969
400
+
51
50
y
    The equation is transformed into :
     
969
400
+
51
50
y = 1 + y +
31
20
     Right side of the equation =
51
20
+ y
    The equation is transformed into :
     
969
400
+
51
50
y =
51
20
+ y

    Transposition :
     
51
50
y y =
51
20
969
400

    Combine the items on the left of the equation:
     
1
50
y =
51
20
969
400

    Combine the items on the right of the equation:
     
1
50
y =
51
400

    The coefficient of the unknown number is reduced to 1 :
      y =
51
400
÷
1
50
        =
51
400
× 50
        =
51
8
× 1

    We obtained :
      y =
51
8
    This is the solution of the equation.

    Convert the result to decimal form :
      y = 6.375



Your problem has not been solved here? Please go to the Hot Problems section!





  New addition:Lenders ToolBox module(Specific location:Math OP > Lenders ToolBox ),welcome。