| ( | 5 | ( | 61 | + | x | ) | + | ( | 4 | ( | 10 | + | x | ) | + | ( | 3 | ( | 16 | + | x | ) | + | ( | 2 | ( | 7 | + | x | ) | + | ( | 1 | ( | 5 | + | x | ) | ÷ | ( | 99 | + | x | ) | ) | ) | ) | ) | ) | = | 23 5 |
| 5 | ( | 61 | + | x | ) | + | ( | 4 | ( | 10 | + | x | ) | + | ( | 3 | ( | 16 | + | x | ) | + | ( | 2 | ( | 7 | + | x | ) | + | ( | 1 | ( | 5 | + | x | ) | ÷ | ( | 99 | + | x | ) | ) | ) | ) | ) | = | 23 5 |
| 5 | × | 61 | + | 5 | x | + | ( | 4 | ( | 10 | + | x | ) | + | ( | 3 | ( | 16 | + | x | ) | + | ( | 2 | ( | 7 | + | x | ) | + | ( | 1 | ( | 5 | + | x | ) | ÷ | ( | 99 | + | x | ) | ) | ) | ) | ) | = | 23 5 |
| 305 | + | 5 | x | + | ( | 4 | ( | 10 | + | x | ) | + | ( | 3 | ( | 16 | + | x | ) | + | ( | 2 | ( | 7 | + | x | ) | + | ( | 1 | ( | 5 | + | x | ) | ÷ | ( | 99 | + | x | ) | ) | ) | ) | ) | = | 23 5 |
| 305 | + | 5 | x | + | 4 | ( | 10 | + | x | ) | + | ( | 3 | ( | 16 | + | x | ) | + | ( | 2 | ( | 7 | + | x | ) | + | ( | 1 | ( | 5 | + | x | ) | ÷ | ( | 99 | + | x | ) | ) | ) | ) | = | 23 5 |
| 305 | + | 5 | x | + | 4 | × | 10 | + | 4 | x | + | ( | 3 | ( | 16 | + | x | ) | + | ( | 2 | ( | 7 | + | x | ) | + | ( | 1 | ( | 5 | + | x | ) | ÷ | ( | 99 | + | x | ) | ) | ) | ) | = | 23 5 |
| 305 | + | 5 | x | + | 40 | + | 4 | x | + | ( | 3 | ( | 16 | + | x | ) | + | ( | 2 | ( | 7 | + | x | ) | + | ( | 1 | ( | 5 | + | x | ) | ÷ | ( | 99 | + | x | ) | ) | ) | ) | = | 23 5 |
| 345 | + | 9 | x | + | ( | 3 | ( | 16 | + | x | ) | + | ( | 2 | ( | 7 | + | x | ) | + | ( | 1 | ( | 5 | + | x | ) | ÷ | ( | 99 | + | x | ) | ) | ) | ) | = | 23 5 |
| 345 | + | 9 | x | + | 3 | ( | 16 | + | x | ) | + | ( | 2 | ( | 7 | + | x | ) | + | ( | 1 | ( | 5 | + | x | ) | ÷ | ( | 99 | + | x | ) | ) | ) | = | 23 5 |
| 345 | + | 9 | x | + | 3 | × | 16 | + | 3 | x | + | ( | 2 | ( | 7 | + | x | ) | + | ( | 1 | ( | 5 | + | x | ) | ÷ | ( | 99 | + | x | ) | ) | ) | = | 23 5 |
| 345 | + | 9 | x | + | 48 | + | 3 | x | + | ( | 2 | ( | 7 | + | x | ) | + | ( | 1 | ( | 5 | + | x | ) | ÷ | ( | 99 | + | x | ) | ) | ) | = | 23 5 |
| 393 | + | 12 | x | + | ( | 2 | ( | 7 | + | x | ) | + | ( | 1 | ( | 5 | + | x | ) | ÷ | ( | 99 | + | x | ) | ) | ) | = | 23 5 |
| 393 | + | 12 | x | + | 2 | ( | 7 | + | x | ) | + | ( | 1 | ( | 5 | + | x | ) | ÷ | ( | 99 | + | x | ) | ) | = | 23 5 |
| 393 | + | 12 | x | + | 2 | × | 7 | + | 2 | x | + | ( | 1 | ( | 5 | + | x | ) | ÷ | ( | 99 | + | x | ) | ) | = | 23 5 |
| 393 | + | 12 | x | + | 14 | + | 2 | x | + | ( | 1 | ( | 5 | + | x | ) | ÷ | ( | 99 | + | x | ) | ) | = | 23 5 |
| 407 | + | 14 | x | + | ( | 1 | ( | 5 | + | x | ) | ÷ | ( | 99 | + | x | ) | ) | = | 23 5 |
| 407 | + | 14 | x | + | 1 | ( | 5 | + | x | ) | ÷ | ( | 99 | + | x | ) | = | 23 5 |
| Multiply both sides of the equation by: | ( | 99 | + | x | ) |
| 407 | ( | 99 | + | x | ) | + | 14 | x | ( | 99 | + | x | ) | + | 1 | ( | 5 | + | x | ) | = | 23 5 | ( | 99 | + | x | ) |
| 407 | × | 99 | + | 407 | x | + | 14 | x | ( | 99 | + | x | ) | + | 1 | ( | 5 | + | x | ) | = | 23 5 | ( | 99 | + | x | ) |
| 407 | × | 99 | + | 407 | x | + | 14 | x | ( | 99 | + | x | ) | + | 1 | ( | 5 | + | x | ) | = | 23 5 | × | 99 | + | 23 5 | x |
| 40293 | + | 407 | x | + | 14 | x | ( | 99 | + | x | ) | + | 1 | ( | 5 | + | x | ) | = | 2277 5 | + | 23 5 | x |
| 40293 | + | 407 | x | + | 14 | x | × | 99 | + | 14 | x | x | + | 1 | ( | 5 | + | x | ) | = | 2277 5 | + | 23 5 | x |
| 40293 | + | 407 | x | + | 1386 | x | + | 14 | x | x | + | 1 | ( | 5 | + | x | ) | = | 2277 5 | + | 23 5 | x |
| 40293 | + | 1793 | x | + | 14 | x | x | + | 1 | ( | 5 | + | x | ) | = | 2277 5 | + | 23 5 | x |
| 40293 | + | 1793 | x | + | 14 | x | x | + | 1 | × | 5 | + | 1 | x | = | 2277 5 | + | 23 5 | x |