Mathematics
         
语言:中文    Language:English
On line Solution of Monovariate Equation:
    Input any unary equation directly, and then click the "Next" button to obtain the solution of the equation.
    It supports equations that contain mathematical functions.
    Current location:Equations > Monovariate Equation > The history of univariate equation calculation > Answer

    Overview: 1 questions will be solved this time.Among them
           ☆1 equations

[ 1/1 Equation]
    Work: Find the solution of equation x = 1/(1/(0.6527*3.86/1000)+1/2.776) .
    Question type: Equation
    Solution:Original question:
      x = 1 ÷ (1 ÷ (
6527
10000
×
193
50
÷ 1000) + 1 ÷
347
125
)
     Multiply both sides of the equation by:(1 ÷ (
6527
10000
×
193
50
÷ 1000) + 1 ÷
347
125
)
      x (1 ÷ (
6527
10000
×
193
50
÷ 1000) + 1 ÷
347
125
) = 1
    Remove a bracket on the left of the equation::
      x × 1 ÷ (
6527
10000
×
193
50
÷ 1000) + x × 1 ÷
347
125
= 1
    The equation is reduced to :
      x × 1 ÷ (
6527
10000
×
193
50
÷ 1000) + x ×
125
347
= 1
     Multiply both sides of the equation by:(
6527
10000
×
193
50
÷ 1000)
      x × 1 +
125
347
x (
6527
10000
×
193
50
÷ 1000) = 1(
6527
10000
×
193
50
÷ 1000)
    Remove a bracket on the left of the equation:
      x × 1 +
125
347
x ×
6527
10000
×
193
50
÷ 1000 = 1(
6527
10000
×
193
50
÷ 1000)
    Remove a bracket on the right of the equation::
      x × 1 +
125
347
x ×
6527
10000
×
193
50
÷ 1000 = 1 ×
6527
10000
×
193
50
÷ 1000
    The equation is reduced to :
      x × 1 +
1259711
1388000000
x =
1259711
500000000
    The equation is reduced to :
     
1389259711
1388000000
x =
1259711
500000000

    The coefficient of the unknown number is reduced to 1 :
      x =
1259711
500000000
÷
1389259711
1388000000
        =
1259711
500000000
×
1388000000
1389259711
        =
1259711
125
×
347
1389259711

    We obtained :
      x =
437119717
173657463875
    This is the solution of the equation.



Your problem has not been solved here? Please go to the Hot Problems section!





  New addition:Lenders ToolBox module(Specific location:Math OP > Lenders ToolBox ),welcome。