Mathematics
         
语言:中文    Language:English
On line Solution of Monovariate Equation:
    Input any unary equation directly, and then click the "Next" button to obtain the solution of the equation.
    It supports equations that contain mathematical functions.
    Current location:Equations > Monovariate Equation > The history of univariate equation calculation > Answer

    Overview: 1 questions will be solved this time.Among them
           ☆1 equations

[ 1/1 Equation]
    Work: Find the solution of equation [100q-(280+353.571+50)-(100q*0.13-20)*0.1]*0.75/(2100+250) = 8% .
    Question type: Equation
    Solution:Original question:
     (100 q (280 +
353571
1000
+ 50)(100 q ×
13
100
20) ×
1
10
) ×
3
4
÷ (2100 + 250) =
8
100
     Multiply both sides of the equation by:(2100 + 250)
     (100 q (280 +
353571
1000
+ 50)(100 q ×
13
100
20) ×
1
10
) ×
3
4
=
8
100
(2100 + 250)
    Remove a bracket on the left of the equation::
     100 q ×
3
4
(280 +
353571
1000
+ 50) ×
3
4
(100 q ×
13
100
20) ×
1
10
×
3
4
=
8
100
(2100 + 250)
    Remove a bracket on the right of the equation::
     100 q ×
3
4
(280 +
353571
1000
+ 50) ×
3
4
(100 q ×
13
100
20) ×
1
10
×
3
4
=
8
100
× 2100 +
8
100
× 250
    The equation is reduced to :
     75 q (280 +
353571
1000
+ 50) ×
3
4
(100 q ×
13
100
20) ×
3
40
= 168 + 20
    The equation is reduced to :
     75 q (280 +
353571
1000
+ 50) ×
3
4
(100 q ×
13
100
20) ×
3
40
= 188
    Remove a bracket on the left of the equation:
     75 q 280 ×
3
4
353571
1000
×
3
4
50 ×
3
4
(100 q ×
13
100
20) ×
3
40
= 188
    The equation is reduced to :
     75 q 210
1060713
4000
75
2
(100 q ×
13
100
20) ×
3
40
= 188
    The equation is reduced to :
     75 q
2050713
4000
(100 q ×
13
100
20) ×
3
40
= 188
    Remove a bracket on the left of the equation:
     75 q
2050713
4000
100 q ×
13
100
×
3
40
+ 20 ×
3
40
= 188
    The equation is reduced to :
     75 q
2050713
4000
39
40
q +
3
2
= 188
    The equation is reduced to :
     
2961
40
q
2044713
4000
= 188

    Transposition :
     
2961
40
q = 188 +
2044713
4000

    Combine the items on the right of the equation:
     
2961
40
q =
2796713
4000

    The coefficient of the unknown number is reduced to 1 :
      q =
2796713
4000
÷
2961
40
        =
2796713
4000
×
40
2961
        =
2796713
100
×
1
2961

    We obtained :
      q =
2796713
296100
    This is the solution of the equation.

    Convert the result to decimal form :
      q = 9.445164



Your problem has not been solved here? Please go to the Hot Problems section!





  New addition:Lenders ToolBox module(Specific location:Math OP > Lenders ToolBox ),welcome。