Mathematics
         
语言:中文    Language:English
On line Solution of Monovariate Equation:
    Input any unary equation directly, and then click the "Next" button to obtain the solution of the equation.
    It supports equations that contain mathematical functions.
    Current location:Equations > Monovariate Equation > The history of univariate equation calculation > Answer

    Overview: 1 questions will be solved this time.Among them
           ☆1 equations

[ 1/1 Equation]
    Work: Find the solution of equation 45:(x/2-45) = (x/2+40):(x/2+x/2-40) .
    Question type: Equation
    Solution:Original question:
     45 ÷ ( x ÷ 245) = ( x ÷ 2 + 40) ÷ ( x ÷ 2 + x ÷ 240)
     Multiply both sides of the equation by:( x ÷ 245) ,  ( x ÷ 2 + x ÷ 240)
     45( x ÷ 2 + x ÷ 240) = ( x ÷ 2 + 40)( x ÷ 245)
    Remove a bracket on the left of the equation::
     45 x ÷ 2 + 45 x ÷ 245 × 40 = ( x ÷ 2 + 40)( x ÷ 245)
    Remove a bracket on the right of the equation::
     45 x ÷ 2 + 45 x ÷ 245 × 40 = x ÷ 2 × ( x ÷ 245) + 40( x ÷ 245)
    The equation is reduced to :
     
45
2
x +
45
2
x 1800 = x ×
1
2
( x ÷ 245) + 40( x ÷ 245)
    The equation is reduced to :
     45 x 1800 = x ×
1
2
( x ÷ 245) + 40( x ÷ 245)
    Remove a bracket on the right of the equation::
     45 x 1800 = x ×
1
2
x ÷ 2 x ×
1
2
× 45 + 40( x ÷ 245)
    The equation is reduced to :
     45 x 1800 = x ×
1
4
x x ×
45
2
+ 40( x ÷ 245)
    Remove a bracket on the right of the equation::
     45 x 1800 = x ×
1
4
x
45
2
x + 40 x ÷ 240 × 45
    The equation is reduced to :
     45 x 1800 = x ×
1
4
x
45
2
x + 20 x 1800
    The equation is reduced to :
     45 x 1800 = x ×
1
4
x
5
2
x 1800

    After the equation is converted into a general formula, it is converted into:
    ( x +0 )( x - 190 )=0
    From
        x + 0 = 0
        x - 190 = 0

    it is concluded that::
        x1=0
        x2=190
    
    There are 2 solution(s).


解一元二次方程的详细方法请参阅:《一元二次方程的解法》



Your problem has not been solved here? Please go to the Hot Problems section!





  New addition:Lenders ToolBox module(Specific location:Math OP > Lenders ToolBox ),welcome。