Mathematics
         
语言:中文    Language:English
On line Solution of Monovariate Equation:
    Input any unary equation directly, and then click the "Next" button to obtain the solution of the equation.
    It supports equations that contain mathematical functions.
    Current location:Equations > Monovariate Equation > The history of univariate equation calculation > Answer

    Overview: 1 questions will be solved this time.Among them
           ☆1 equations

[ 1/1 Equation]
    Work: Find the solution of equation (x-20)(1-0.33)/15 = (x-20-40)(1-0.33)/10 .
    Question type: Equation
    Solution:Original question:
     ( x 20)(1
33
100
) ÷ 15 = ( x 2040)(1
33
100
) ÷ 10
    Remove the bracket on the left of the equation:
     Left side of the equation = x (1
33
100
) ×
1
15
20(1
33
100
) ×
1
15
                                             = x (1
33
100
) ×
1
15
4
3
(1
33
100
)
                                             = x × 1 ×
1
15
x ×
33
100
×
1
15
4
3
(1
33
100
)
                                             = x ×
1
15
x ×
11
500
4
3
(1
33
100
)
                                             =
67
1500
x
4
3
(1
33
100
)
                                             =
67
1500
x
4
3
× 1 +
4
3
×
33
100
                                             =
67
1500
x
4
3
+
11
25
                                             =
67
1500
x
67
75
    The equation is transformed into :
     
67
1500
x
67
75
= ( x 2040)(1
33
100
) ÷ 10
    Remove the bracket on the right of the equation:
     Right side of the equation = x (1
33
100
) ×
1
10
20(1
33
100
) ×
1
10
40(1
33
100
) ×
1
10
                                               = x (1
33
100
) ×
1
10
2(1
33
100
)4(1
33
100
)
                                               = x × 1 ×
1
10
x ×
33
100
×
1
10
2(1
33
100
)4(1
33
100
)
                                               = x ×
1
10
x ×
33
1000
2(1
33
100
)4(1
33
100
)
                                               =
67
1000
x 2(1
33
100
)4(1
33
100
)
                                               =
67
1000
x 2 × 1 + 2 ×
33
100
4(1
33
100
)
                                               =
67
1000
x 2 +
33
50
4(1
33
100
)
                                               =
67
1000
x
67
50
4(1
33
100
)
                                               =
67
1000
x
67
50
4 × 1 + 4 ×
33
100
                                               =
67
1000
x
67
50
4 +
33
25
                                               =
67
1000
x
201
50
    The equation is transformed into :
     
67
1500
x
67
75
=
67
1000
x
201
50

    Transposition :
     
67
1500
x
67
1000
x = -
201
50
+
67
75

    Combine the items on the left of the equation:
      -
67
3000
x = -
201
50
+
67
75

    Combine the items on the right of the equation:
      -
67
3000
x = -
469
150

    By shifting the terms and changing the symbols on toth sides of the equation, we obtain :
     
469
150
=
67
3000
x

    If the left side of the equation is equal to the right side, then the right side must also be equal to the left side, that is :
     
67
3000
x =
469
150

    The coefficient of the unknown number is reduced to 1 :
      x =
469
150
÷
67
3000
        =
469
150
×
3000
67
        = 7 × 20

    We obtained :
      x = 140
    This is the solution of the equation.



Your problem has not been solved here? Please go to the Hot Problems section!





  New addition:Lenders ToolBox module(Specific location:Math OP > Lenders ToolBox ),welcome。