Mathematics
         
语言:中文    Language:English
On line Solution of Monovariate Equation:
    Input any unary equation directly, and then click the "Next" button to obtain the solution of the equation.
    It supports equations that contain mathematical functions.
    Current location:Equations > Monovariate Equation > The history of univariate equation calculation > Answer

    Overview: 1 questions will be solved this time.Among them
           ☆1 equations

[ 1/1 Equation]
    Work: Find the solution of equation (350-200)/(500-350) = (A-9)/(20.9-A) .
    Question type: Equation
    Solution:Original question:
     (350200) ÷ (500350) = ( A 9) ÷ (
209
10
A )
     Multiply both sides of the equation by:(500350) ,  (
209
10
A )
     (350200)(
209
10
A ) = ( A 9)(500350)
    Remove a bracket on the left of the equation::
     350(
209
10
A )200(
209
10
A ) = ( A 9)(500350)
    Remove a bracket on the right of the equation::
     350(
209
10
A )200(
209
10
A ) = A (500350)9(500350)
    Remove a bracket on the left of the equation:
     350 ×
209
10
350 A 200(
209
10
A ) = A (500350)9(500350)
    Remove a bracket on the right of the equation::
     350 ×
209
10
350 A 200(
209
10
A ) = A × 500 A × 3509(500350)
    The equation is reduced to :
     7315350 A 200(
209
10
A ) = A × 500 A × 3509(500350)
    The equation is reduced to :
     7315350 A 200(
209
10
A ) = 150 A 9(500350)
    Remove a bracket on the left of the equation:
     7315350 A 200 ×
209
10
+ 200 A = 150 A 9(500350)
    Remove a bracket on the right of the equation::
     7315350 A 200 ×
209
10
+ 200 A = 150 A 9 × 500 + 9 × 350
    The equation is reduced to :
     7315350 A 4180 + 200 A = 150 A 4500 + 3150
    The equation is reduced to :
     3135150 A = 150 A 1350

    Transposition :
      - 150 A 150 A = - 13503135

    Combine the items on the left of the equation:
      - 300 A = - 13503135

    Combine the items on the right of the equation:
      - 300 A = - 4485

    By shifting the terms and changing the symbols on toth sides of the equation, we obtain :
     4485 = 300 A

    If the left side of the equation is equal to the right side, then the right side must also be equal to the left side, that is :
     300 A = 4485

    The coefficient of the unknown number is reduced to 1 :
      A = 4485 ÷ 300
        = 4485 ×
1
300
        = 299 ×
1
20

    We obtained :
      A =
299
20
    This is the solution of the equation.

    Convert the result to decimal form :
      A = 14.95



Your problem has not been solved here? Please go to the Hot Problems section!





  New addition:Lenders ToolBox module(Specific location:Math OP > Lenders ToolBox ),welcome。