Mathematics
         
语言:中文    Language:English
On line Solution of Monovariate Equation:
    Input any unary equation directly, and then click the "Next" button to obtain the solution of the equation.
    It supports equations that contain mathematical functions.
    Current location:Equations > Monovariate Equation > The history of univariate equation calculation > Answer

    Overview: 1 questions will be solved this time.Among them
           ☆1 equations

[ 1/1 Equation]
    Work: Find the solution of equation (360-200)/(500-360) = (A-9)/(20.9-A) .
    Question type: Equation
    Solution:Original question:
     (360200) ÷ (500360) = ( A 9) ÷ (
209
10
A )
     Multiply both sides of the equation by:(500360) ,  (
209
10
A )
     (360200)(
209
10
A ) = ( A 9)(500360)
    Remove a bracket on the left of the equation::
     360(
209
10
A )200(
209
10
A ) = ( A 9)(500360)
    Remove a bracket on the right of the equation::
     360(
209
10
A )200(
209
10
A ) = A (500360)9(500360)
    Remove a bracket on the left of the equation:
     360 ×
209
10
360 A 200(
209
10
A ) = A (500360)9(500360)
    Remove a bracket on the right of the equation::
     360 ×
209
10
360 A 200(
209
10
A ) = A × 500 A × 3609(500360)
    The equation is reduced to :
     7524360 A 200(
209
10
A ) = A × 500 A × 3609(500360)
    The equation is reduced to :
     7524360 A 200(
209
10
A ) = 140 A 9(500360)
    Remove a bracket on the left of the equation:
     7524360 A 200 ×
209
10
+ 200 A = 140 A 9(500360)
    Remove a bracket on the right of the equation::
     7524360 A 200 ×
209
10
+ 200 A = 140 A 9 × 500 + 9 × 360
    The equation is reduced to :
     7524360 A 4180 + 200 A = 140 A 4500 + 3240
    The equation is reduced to :
     3344160 A = 140 A 1260

    Transposition :
      - 160 A 140 A = - 12603344

    Combine the items on the left of the equation:
      - 300 A = - 12603344

    Combine the items on the right of the equation:
      - 300 A = - 4604

    By shifting the terms and changing the symbols on toth sides of the equation, we obtain :
     4604 = 300 A

    If the left side of the equation is equal to the right side, then the right side must also be equal to the left side, that is :
     300 A = 4604

    The coefficient of the unknown number is reduced to 1 :
      A = 4604 ÷ 300
        = 4604 ×
1
300
        = 1151 ×
1
75

    We obtained :
      A =
1151
75
    This is the solution of the equation.

    Convert the result to decimal form :
      A = 15.346667



Your problem has not been solved here? Please go to the Hot Problems section!





  New addition:Lenders ToolBox module(Specific location:Math OP > Lenders ToolBox ),welcome。