Mathematics
         
语言:中文    Language:English
On line Solution of Monovariate Equation:
    Input any unary equation directly, and then click the "Next" button to obtain the solution of the equation.
    It supports equations that contain mathematical functions.
    Current location:Equations > Monovariate Equation > The history of univariate equation calculation > Answer

    Overview: 1 questions will be solved this time.Among them
           ☆1 equations

[ 1/1 Equation]
    Work: Find the solution of equation (135389.06+(x/0.06)*1.06)/(2256483.4+x*0.06) = 0.012 .
    Question type: Equation
    Solution:Original question:
     (
6769453
50
+ ( x ÷
3
50
) ×
53
50
) ÷ (
11282417
5
+ x ×
3
50
) =
3
250
     Multiply both sides of the equation by:(
11282417
5
+ x ×
3
50
)
     (
6769453
50
+ ( x ÷
3
50
) ×
53
50
) =
3
250
(
11282417
5
+ x ×
3
50
)
    Remove a bracket on the left of the equation::
     
6769453
50
+ ( x ÷
3
50
) ×
53
50
=
3
250
(
11282417
5
+ x ×
3
50
)
    Remove a bracket on the right of the equation::
     
6769453
50
+ ( x ÷
3
50
) ×
53
50
=
3
250
×
11282417
5
+
3
250
x ×
3
50
    The equation is reduced to :
     
6769453
50
+ ( x ÷
3
50
) ×
53
50
=
33847251
1250
+
9
12500
x
    Remove a bracket on the left of the equation:
     
6769453
50
+ x ÷
3
50
×
53
50
=
33847251
1250
+
9
12500
x
    The equation is reduced to :
     
6769453
50
+ x ×
53
3
=
33847251
1250
+
9
12500
x

    Transposition :
     
53
3
x
9
12500
x =
33847251
1250
6769453
50

    Combine the items on the left of the equation:
     
662473
37500
x =
33847251
1250
6769453
50

    Combine the items on the right of the equation:
     
662473
37500
x = -
67694537
625

    The coefficient of the unknown number is reduced to 1 :
      x = -
67694537
625
÷
662473
37500
        = -
67694537
625
×
37500
662473
        = - 67694537 ×
60
662473

    We obtained :
      x = -
4061672220
662473
    This is the solution of the equation.

    Convert the result to decimal form :
      x = - 6131.075863



Your problem has not been solved here? Please go to the Hot Problems section!





  New addition:Lenders ToolBox module(Specific location:Math OP > Lenders ToolBox ),welcome。