Mathematics
         
语言:中文    Language:English
On line Solution of Monovariate Equation:
    Input any unary equation directly, and then click the "Next" button to obtain the solution of the equation.
    It supports equations that contain mathematical functions.
    Current location:Equations > Monovariate Equation > The history of univariate equation calculation > Answer

    Overview: 1 questions will be solved this time.Among them
           ☆1 equations

[ 1/1 Equation]
    Work: Find the solution of equation (370-200)/(500-370) = (A-9)/(20.9-A) .
    Question type: Equation
    Solution:Original question:
     (370200) ÷ (500370) = ( A 9) ÷ (
209
10
A )
     Multiply both sides of the equation by:(500370) ,  (
209
10
A )
     (370200)(
209
10
A ) = ( A 9)(500370)
    Remove a bracket on the left of the equation::
     370(
209
10
A )200(
209
10
A ) = ( A 9)(500370)
    Remove a bracket on the right of the equation::
     370(
209
10
A )200(
209
10
A ) = A (500370)9(500370)
    Remove a bracket on the left of the equation:
     370 ×
209
10
370 A 200(
209
10
A ) = A (500370)9(500370)
    Remove a bracket on the right of the equation::
     370 ×
209
10
370 A 200(
209
10
A ) = A × 500 A × 3709(500370)
    The equation is reduced to :
     7733370 A 200(
209
10
A ) = A × 500 A × 3709(500370)
    The equation is reduced to :
     7733370 A 200(
209
10
A ) = 130 A 9(500370)
    Remove a bracket on the left of the equation:
     7733370 A 200 ×
209
10
+ 200 A = 130 A 9(500370)
    Remove a bracket on the right of the equation::
     7733370 A 200 ×
209
10
+ 200 A = 130 A 9 × 500 + 9 × 370
    The equation is reduced to :
     7733370 A 4180 + 200 A = 130 A 4500 + 3330
    The equation is reduced to :
     3553170 A = 130 A 1170

    Transposition :
      - 170 A 130 A = - 11703553

    Combine the items on the left of the equation:
      - 300 A = - 11703553

    Combine the items on the right of the equation:
      - 300 A = - 4723

    By shifting the terms and changing the symbols on toth sides of the equation, we obtain :
     4723 = 300 A

    If the left side of the equation is equal to the right side, then the right side must also be equal to the left side, that is :
     300 A = 4723

    The coefficient of the unknown number is reduced to 1 :
      A = 4723 ÷ 300
        = 4723 ×
1
300

    We obtained :
      A =
4723
300
    This is the solution of the equation.

    Convert the result to decimal form :
      A = 15.743333



Your problem has not been solved here? Please go to the Hot Problems section!





  New addition:Lenders ToolBox module(Specific location:Math OP > Lenders ToolBox ),welcome。