456 5 | ÷ | ( | 1 | + | ( | x | ÷ | 12 | × | 3 | ) | ) | + | 1938 25 | ÷ | ( | 1 | + | ( | x | ÷ | 12 | × | 6 | ) | ) | + | 2698 25 | ÷ | ( | 1 | + | x | ) | = | 6156 25 |
| Multiply both sides of the equation by: | ( | 1 | + | ( | x | ÷ | 12 | × | 3 | ) | ) |
456 5 | + | 1938 25 | ÷ | ( | 1 | + | ( | x | ÷ | 12 | × | 6 | ) | ) | × | ( | 1 | + | ( | x | ÷ | 12 | × | 3 | ) | ) | + | 2698 25 | ÷ | ( | 1 | + | x | ) | × | ( | 1 | + | ( | x | ÷ | 12 | × | 3 | ) | ) | = | 6156 25 | ( | 1 | + | ( | x | ÷ | 12 | × | 3 | ) | ) |
456 5 | + | 1938 25 | ÷ | ( | 1 | + | ( | x | ÷ | 12 | × | 6 | ) | ) | × | 1 | + | 1938 25 | ÷ | ( | 1 | + | ( | x | ÷ | 12 | × | 6 | ) | ) | × | ( | x | ÷ | 12 | × | 3 | ) | + | 2698 25 | ÷ | ( | 1 | + | x | ) | × | ( | 1 | + | ( | x | ÷ | 12 | × | 3 | ) | ) | = | 6156 25 | ( | 1 | + | ( | x | ÷ | 12 | × | 3 | ) | ) |
456 5 | + | 1938 25 | ÷ | ( | 1 | + | ( | x | ÷ | 12 | × | 6 | ) | ) | × | 1 | + | 1938 25 | ÷ | ( | 1 | + | ( | x | ÷ | 12 | × | 6 | ) | ) | × | ( | x | ÷ | 12 | × | 3 | ) | + | 2698 25 | ÷ | ( | 1 | + | x | ) | × | ( | 1 | + | ( | x | ÷ | 12 | × | 3 | ) | ) | = | 6156 25 | × | 1 | + | 6156 25 | ( | x | ÷ | 12 | × | 3 | ) |
456 5 | + | 1938 25 | ÷ | ( | 1 | + | ( | x | ÷ | 12 | × | 6 | ) | ) | + | 1938 25 | ÷ | ( | 1 | + | ( | x | ÷ | 12 | × | 6 | ) | ) | × | ( | x | ÷ | 12 | × | 3 | ) | + | 2698 25 | ÷ | ( | 1 | + | x | ) | × | ( | 1 | + | ( | x | ÷ | 12 | × | 3 | ) | ) | = | 6156 25 | + | 6156 25 | ( | x | ÷ | 12 | × | 3 | ) |
| Multiply both sides of the equation by: | ( | 1 | + | ( | x | ÷ | 12 | × | 6 | ) | ) |
456 5 | ( | 1 | + | ( | x | ÷ | 12 | × | 6 | ) | ) | + | 1938 25 | + | 1938 25 | ÷ | ( | 1 | + | ( | x | ÷ | 12 | × | 6 | ) | ) | × | ( | x | ÷ | 12 | × | 3 | ) | ( | 1 | + | ( | x | ÷ | 12 | × | 6 | ) | ) | + | 2698 25 | ÷ | ( | 1 | + | x | ) | × | ( | 1 | + | ( | x | ÷ | 12 | × | 3 | ) | ) | ( | 1 | + | ( | x | ÷ | 12 | × | 6 | ) | ) | = | 6156 25 | ( | 1 | + | ( | x | ÷ | 12 | × | 6 | ) | ) | + | 6156 25 | ( | x | ÷ | 12 | × | 3 | ) | ( | 1 | + | ( | x | ÷ | 12 | × | 6 | ) | ) |
456 5 | × | 1 | + | 456 5 | ( | x | ÷ | 12 | × | 6 | ) | + | 1938 25 | + | 1938 25 | ÷ | ( | 1 | + | ( | x | ÷ | 12 | × | 6 | ) | ) | × | ( | x | ÷ | 12 | × | 3 | ) | ( | 1 | + | ( | x | ÷ | 12 | × | 6 | ) | ) | + | 2698 25 | ÷ | ( | 1 | + | x | ) | × | ( | 1 | + | ( | x | ÷ | 12 | × | 3 | ) | ) | = | 6156 25 | ( | 1 | + | ( | x | ÷ | 12 | × | 6 | ) | ) | + | 6156 25 | ( | x | ÷ | 12 | × | 3 | ) | ( | 1 | + | ( | x | ÷ | 12 | × | 6 | ) | ) |
456 5 | × | 1 | + | 456 5 | ( | x | ÷ | 12 | × | 6 | ) | + | 1938 25 | + | 1938 25 | ÷ | ( | 1 | + | ( | x | ÷ | 12 | × | 6 | ) | ) | × | ( | x | ÷ | 12 | × | 3 | ) | ( | 1 | + | ( | x | ÷ | 12 | × | 6 | ) | ) | + | 2698 25 | ÷ | ( | 1 | + | x | ) | × | ( | 1 | + | ( | x | ÷ | 12 | × | 3 | ) | ) | = | 6156 25 | × | 1 | + | 6156 25 | ( | x | ÷ | 12 | × | 6 | ) | + | 6156 25 | ( | x | ÷ | 12 | × | 3 | ) | ( | 1 | + | ( | x | ÷ | 12 | × | 6 | ) | ) |
456 5 | + | 456 5 | ( | x | ÷ | 12 | × | 6 | ) | + | 1938 25 | + | 1938 25 | ÷ | ( | 1 | + | ( | x | ÷ | 12 | × | 6 | ) | ) | × | ( | x | ÷ | 12 | × | 3 | ) | ( | 1 | + | ( | x | ÷ | 12 | × | 6 | ) | ) | + | 2698 25 | ÷ | ( | 1 | + | x | ) | × | ( | 1 | + | ( | x | ÷ | 12 | × | 3 | ) | ) | ( | 1 | + | ( | x | ÷ | 12 | × | 6 | ) | ) | = | 6156 25 | + | 6156 25 | ( | x | ÷ | 12 | × | 6 | ) | + | 6156 25 | ( | x | ÷ | 12 | × | 3 | ) | ( | 1 | + | ( | x | ÷ | 12 | × | 6 | ) | ) |
4218 25 | + | 456 5 | ( | x | ÷ | 12 | × | 6 | ) | + | 1938 25 | ÷ | ( | 1 | + | ( | x | ÷ | 12 | × | 6 | ) | ) | × | ( | x | ÷ | 12 | × | 3 | ) | ( | 1 | + | ( | x | ÷ | 12 | × | 6 | ) | ) | + | 2698 25 | ÷ | ( | 1 | + | x | ) | × | ( | 1 | + | ( | x | ÷ | 12 | × | 3 | ) | ) | ( | 1 | + | ( | x | ÷ | 12 | × | 6 | ) | ) | = | 6156 25 | + | 6156 25 | ( | x | ÷ | 12 | × | 6 | ) | + | 6156 25 | ( | x | ÷ | 12 | × | 3 | ) | ( | 1 | + | ( | x | ÷ | 12 | × | 6 | ) | ) |
| Multiply both sides of the equation by: | ( | 1 | + | ( | x | ÷ | 12 | × | 6 | ) | ) |
4218 25 | ( | 1 | + | ( | x | ÷ | 12 | × | 6 | ) | ) | + | 456 5 | ( | x | ÷ | 12 | × | 6 | ) | ( | 1 | + | ( | x | ÷ | 12 | × | 6 | ) | ) | + | 1938 25 | ( | x | ÷ | 12 | × | 3 | ) | ( | 1 | + | ( | x | ÷ | 12 | × | 6 | ) | ) | + | 2698 25 | ÷ | ( | 1 | + | x | ) | × | ( | 1 | + | ( | x | ÷ | 12 | × | 3 | ) | ) | ( | 1 | + | ( | x | ÷ | 12 | × | 6 | ) | ) | = | 6156 25 | ( | 1 | + | ( | x | ÷ | 12 | × | 6 | ) | ) | + | 6156 25 | ( | x | ÷ | 12 | × | 6 | ) | ( | 1 | + | ( | x | ÷ | 12 | × | 6 | ) | ) | + | 6156 25 | ( | x | ÷ | 12 | × | 3 | ) | ( | 1 | + | ( | x | ÷ | 12 | × | 6 | ) | ) | ( | 1 | + | ( | x | ÷ | 12 | × | 6 | ) | ) |
4218 25 | × | 1 | + | 4218 25 | ( | x | ÷ | 12 | × | 6 | ) | + | 456 5 | ( | x | ÷ | 12 | × | 6 | ) | ( | 1 | + | ( | x | ÷ | 12 | × | 6 | ) | ) | + | 1938 25 | ( | x | ÷ | 12 | × | 3 | ) | ( | 1 | + | ( | x | ÷ | 12 | × | 6 | ) | ) | + | 2698 25 | ÷ | ( | 1 | + | x | ) | = | 6156 25 | ( | 1 | + | ( | x | ÷ | 12 | × | 6 | ) | ) | + | 6156 25 | ( | x | ÷ | 12 | × | 6 | ) | ( | 1 | + | ( | x | ÷ | 12 | × | 6 | ) | ) | + | 6156 25 | ( | x | ÷ | 12 | × | 3 | ) | ( | 1 | + | ( | x | ÷ | 12 | × | 6 | ) | ) | ( | 1 | + | ( | x | ÷ | 12 | × | 6 | ) | ) |
4218 25 | × | 1 | + | 4218 25 | ( | x | ÷ | 12 | × | 6 | ) | + | 456 5 | ( | x | ÷ | 12 | × | 6 | ) | ( | 1 | + | ( | x | ÷ | 12 | × | 6 | ) | ) | + | 1938 25 | ( | x | ÷ | 12 | × | 3 | ) | ( | 1 | + | ( | x | ÷ | 12 | × | 6 | ) | ) | + | 2698 25 | ÷ | ( | 1 | + | x | ) | = | 6156 25 | × | 1 | + | 6156 25 | ( | x | ÷ | 12 | × | 6 | ) | + | 6156 25 | ( | x | ÷ | 12 | × | 6 | ) | ( | 1 | + | ( | x | ÷ | 12 | × | 6 | ) | ) | + | 6156 25 | ( | x | ÷ | 12 | × | 3 | ) | ( | 1 | + | ( | x | ÷ | 12 | × | 6 | ) | ) | ( | 1 | + | ( | x | ÷ | 12 | × | 6 | ) | ) |
4218 25 | + | 4218 25 | ( | x | ÷ | 12 | × | 6 | ) | + | 456 5 | ( | x | ÷ | 12 | × | 6 | ) | ( | 1 | + | ( | x | ÷ | 12 | × | 6 | ) | ) | + | 1938 25 | ( | x | ÷ | 12 | × | 3 | ) | ( | 1 | + | ( | x | ÷ | 12 | × | 6 | ) | ) | + | 2698 25 | ÷ | ( | 1 | + | x | ) | × | ( | 1 | + | ( | x | ÷ | 12 | × | 3 | ) | ) | = | 6156 25 | + | 6156 25 | ( | x | ÷ | 12 | × | 6 | ) | + | 6156 25 | ( | x | ÷ | 12 | × | 6 | ) | ( | 1 | + | ( | x | ÷ | 12 | × | 6 | ) | ) | + | 6156 25 | ( | x | ÷ | 12 | × | 3 | ) | ( | 1 | + | ( | x | ÷ | 12 | × | 6 | ) | ) | ( | 1 | + | ( | x | ÷ | 12 | × | 6 | ) | ) |
| Multiply both sides of the equation by: | ( | 1 | + | x | ) |
4218 25 | ( | 1 | + | x | ) | + | 4218 25 | ( | x | ÷ | 12 | × | 6 | ) | ( | 1 | + | x | ) | + | 456 5 | ( | x | ÷ | 12 | × | 6 | ) | ( | 1 | + | ( | x | ÷ | 12 | × | 6 | ) | ) | ( | 1 | + | x | ) | + | 1938 25 | ( | x | ÷ | 12 | × | 3 | ) | ( | 1 | + | ( | x | ÷ | 12 | × | 6 | ) | ) | = | 6156 25 | ( | 1 | + | x | ) | + | 6156 25 | ( | x | ÷ | 12 | × | 6 | ) | ( | 1 | + | x | ) | + | 6156 25 | ( | x | ÷ | 12 | × | 6 | ) | ( | 1 | + | ( | x | ÷ | 12 | × | 6 | ) | ) | ( | 1 | + | x | ) | + | 6156 25 | ( | x | ÷ | 12 | × | 3 | ) | ( | 1 | + | ( | x | ÷ | 12 | × | 6 | ) | ) |
4218 25 | × | 1 | + | 4218 25 | x | + | 4218 25 | ( | x | ÷ | 12 | × | 6 | ) | ( | 1 | + | x | ) | + | 456 5 | ( | x | ÷ | 12 | × | 6 | ) | ( | 1 | + | ( | x | ÷ | 12 | × | 6 | ) | ) | ( | 1 | + | x | ) | + | 1938 25 | = | 6156 25 | ( | 1 | + | x | ) | + | 6156 25 | ( | x | ÷ | 12 | × | 6 | ) | ( | 1 | + | x | ) | + | 6156 25 | ( | x | ÷ | 12 | × | 6 | ) | ( | 1 | + | ( | x | ÷ | 12 | × | 6 | ) | ) | ( | 1 | + | x | ) | + | 6156 25 | ( | x | ÷ | 12 | × | 3 | ) | ( | 1 | + | ( | x | ÷ | 12 | × | 6 | ) | ) |
4218 25 | × | 1 | + | 4218 25 | x | + | 4218 25 | ( | x | ÷ | 12 | × | 6 | ) | ( | 1 | + | x | ) | + | 456 5 | ( | x | ÷ | 12 | × | 6 | ) | ( | 1 | + | ( | x | ÷ | 12 | × | 6 | ) | ) | ( | 1 | + | x | ) | + | 1938 25 | = | 6156 25 | × | 1 | + | 6156 25 | x | + | 6156 25 | ( | x | ÷ | 12 | × | 6 | ) | ( | 1 | + | x | ) | + | 6156 25 | ( | x | ÷ | 12 | × | 6 | ) | ( | 1 | + | ( | x | ÷ | 12 | × | 6 | ) | ) | ( | 1 | + | x | ) | + | 6156 25 |
4218 25 | + | 4218 25 | x | + | 4218 25 | ( | x | ÷ | 12 | × | 6 | ) | ( | 1 | + | x | ) | + | 456 5 | ( | x | ÷ | 12 | × | 6 | ) | ( | 1 | + | ( | x | ÷ | 12 | × | 6 | ) | ) | ( | 1 | + | x | ) | + | 1938 25 | ( | x | ÷ | 12 | × | 3 | ) | = | 6156 25 | + | 6156 25 | x | + | 6156 25 | ( | x | ÷ | 12 | × | 6 | ) | ( | 1 | + | x | ) | + | 6156 25 | ( | x | ÷ | 12 | × | 6 | ) | ( | 1 | + | ( | x | ÷ | 12 | × | 6 | ) | ) | ( | 1 | + | x | ) | + | 6156 25 | ( | x | ÷ | 12 | × | 3 | ) |
4218 25 | + | 4218 25 | x | + | 4218 25 | x | ÷ | 12 | × | 6 | ( | 1 | + | x | ) | + | 456 5 | ( | x | ÷ | 12 | × | 6 | ) | ( | 1 | + | ( | x | ÷ | 12 | × | 6 | ) | ) | ( | 1 | + | x | ) | = | 6156 25 | + | 6156 25 | x | + | 6156 25 | ( | x | ÷ | 12 | × | 6 | ) | ( | 1 | + | x | ) | + | 6156 25 | ( | x | ÷ | 12 | × | 6 | ) | ( | 1 | + | ( | x | ÷ | 12 | × | 6 | ) | ) | ( | 1 | + | x | ) | + | 6156 25 | ( | x | ÷ | 12 | × | 3 | ) |
4218 25 | + | 4218 25 | x | + | 4218 25 | x | ÷ | 12 | × | 6 | ( | 1 | + | x | ) | + | 456 5 | ( | x | ÷ | 12 | × | 6 | ) | ( | 1 | + | ( | x | ÷ | 12 | × | 6 | ) | ) | ( | 1 | + | x | ) | = | 6156 25 | + | 6156 25 | x | + | 6156 25 | x | ÷ | 12 | × | 6 | ( | 1 | + | x | ) | + | 6156 25 | ( | x | ÷ | 12 | × | 6 | ) | ( | 1 | + | ( | x | ÷ | 12 | × | 6 | ) | ) | ( | 1 | + | x | ) |
4218 25 | + | 4218 25 | x | + | 2109 25 | x | ( | 1 | + | x | ) | + | 456 5 | ( | x | ÷ | 12 | × | 6 | ) | ( | 1 | + | ( | x | ÷ | 12 | × | 6 | ) | ) | ( | 1 | + | x | ) | + | 1938 25 | ( | x | ÷ | 12 | × | 3 | ) | = | 6156 25 | + | 6156 25 | x | + | 3078 25 | x | ( | 1 | + | x | ) | + | 6156 25 | ( | x | ÷ | 12 | × | 6 | ) | ( | 1 | + | ( | x | ÷ | 12 | × | 6 | ) | ) | ( | 1 | + | x | ) | + | 6156 25 | ( | x | ÷ | 12 | × | 3 | ) |
4218 25 | + | 4218 25 | x | + | 2109 25 | x | × | 1 | + | 2109 25 | x | x | + | 456 5 | ( | x | ÷ | 12 | × | 6 | ) | ( | 1 | + | ( | x | ÷ | 12 | × | 6 | ) | ) | = | 6156 25 | + | 6156 25 | x | + | 3078 25 | x | ( | 1 | + | x | ) | + | 6156 25 | ( | x | ÷ | 12 | × | 6 | ) | ( | 1 | + | ( | x | ÷ | 12 | × | 6 | ) | ) | ( | 1 | + | x | ) | + | 6156 25 | ( | x | ÷ | 12 | × | 3 | ) |