2449 20 | ÷ | ( | 1 | + | ( | x | ÷ | 12 | × | 3 | ) | ) | + | 2602 25 | ÷ | ( | 1 | + | ( | x | ÷ | 12 | × | 6 | ) | ) | + | 3622 25 | ÷ | ( | 1 | + | x | ) | − | 1653 5 | = | 0 |
| Multiply both sides of the equation by: | ( | 1 | + | ( | x | ÷ | 12 | × | 3 | ) | ) |
2449 20 | + | 2602 25 | ÷ | ( | 1 | + | ( | x | ÷ | 12 | × | 6 | ) | ) | × | ( | 1 | + | ( | x | ÷ | 12 | × | 3 | ) | ) | + | 3622 25 | ÷ | ( | 1 | + | x | ) | × | ( | 1 | + | ( | x | ÷ | 12 | × | 3 | ) | ) | − | 1653 5 | ( | 1 | + | ( | x | ÷ | 12 | × | 3 | ) | ) | = | 0 |
2449 20 | + | 2602 25 | ÷ | ( | 1 | + | ( | x | ÷ | 12 | × | 6 | ) | ) | × | 1 | + | 2602 25 | ÷ | ( | 1 | + | ( | x | ÷ | 12 | × | 6 | ) | ) | × | ( | x | ÷ | 12 | × | 3 | ) | + | 3622 25 | ÷ | ( | 1 | + | x | ) | × | ( | 1 | + | ( | x | ÷ | 12 | × | 3 | ) | ) | − | 1653 5 | ( | 1 | + | ( | x | ÷ | 12 | × | 3 | ) | ) | = | 0 |
2449 20 | + | 2602 25 | ÷ | ( | 1 | + | ( | x | ÷ | 12 | × | 6 | ) | ) | + | 2602 25 | ÷ | ( | 1 | + | ( | x | ÷ | 12 | × | 6 | ) | ) | × | ( | x | ÷ | 12 | × | 3 | ) | + | 3622 25 | ÷ | ( | 1 | + | x | ) | × | ( | 1 | + | ( | x | ÷ | 12 | × | 3 | ) | ) | − | 1653 5 | ( | 1 | + | ( | x | ÷ | 12 | × | 3 | ) | ) | = | 0 |
| Multiply both sides of the equation by: | ( | 1 | + | ( | x | ÷ | 12 | × | 6 | ) | ) |
2449 20 | ( | 1 | + | ( | x | ÷ | 12 | × | 6 | ) | ) | + | 2602 25 | + | 2602 25 | ÷ | ( | 1 | + | ( | x | ÷ | 12 | × | 6 | ) | ) | × | ( | x | ÷ | 12 | × | 3 | ) | ( | 1 | + | ( | x | ÷ | 12 | × | 6 | ) | ) | + | 3622 25 | ÷ | ( | 1 | + | x | ) | × | ( | 1 | + | ( | x | ÷ | 12 | × | 3 | ) | ) | ( | 1 | + | ( | x | ÷ | 12 | × | 6 | ) | ) | − | 1653 5 | = | 0 |
2449 20 | × | 1 | + | 2449 20 | ( | x | ÷ | 12 | × | 6 | ) | + | 2602 25 | + | 2602 25 | ÷ | ( | 1 | + | ( | x | ÷ | 12 | × | 6 | ) | ) | × | ( | x | ÷ | 12 | × | 3 | ) | ( | 1 | + | ( | x | ÷ | 12 | × | 6 | ) | ) | + | 3622 25 | ÷ | ( | 1 | + | x | ) | × | ( | 1 | + | ( | x | ÷ | 12 | × | 3 | ) | ) | = | 0 |
2449 20 | + | 2449 20 | ( | x | ÷ | 12 | × | 6 | ) | + | 2602 25 | + | 2602 25 | ÷ | ( | 1 | + | ( | x | ÷ | 12 | × | 6 | ) | ) | × | ( | x | ÷ | 12 | × | 3 | ) | ( | 1 | + | ( | x | ÷ | 12 | × | 6 | ) | ) | + | 3622 25 | ÷ | ( | 1 | + | x | ) | × | ( | 1 | + | ( | x | ÷ | 12 | × | 3 | ) | ) | ( | 1 | + | ( | x | ÷ | 12 | × | 6 | ) | ) | = | 0 |
22653 100 | + | 2449 20 | ( | x | ÷ | 12 | × | 6 | ) | + | 2602 25 | ÷ | ( | 1 | + | ( | x | ÷ | 12 | × | 6 | ) | ) | × | ( | x | ÷ | 12 | × | 3 | ) | ( | 1 | + | ( | x | ÷ | 12 | × | 6 | ) | ) | + | 3622 25 | ÷ | ( | 1 | + | x | ) | × | ( | 1 | + | ( | x | ÷ | 12 | × | 3 | ) | ) | ( | 1 | + | ( | x | ÷ | 12 | × | 6 | ) | ) | − | 1653 5 | = | 0 |
| Multiply both sides of the equation by: | ( | 1 | + | ( | x | ÷ | 12 | × | 6 | ) | ) |
22653 100 | ( | 1 | + | ( | x | ÷ | 12 | × | 6 | ) | ) | + | 2449 20 | ( | x | ÷ | 12 | × | 6 | ) | ( | 1 | + | ( | x | ÷ | 12 | × | 6 | ) | ) | + | 2602 25 | ( | x | ÷ | 12 | × | 3 | ) | ( | 1 | + | ( | x | ÷ | 12 | × | 6 | ) | ) | + | 3622 25 | ÷ | ( | 1 | + | x | ) | × | ( | 1 | + | ( | x | ÷ | 12 | × | 3 | ) | ) | ( | 1 | + | ( | x | ÷ | 12 | × | 6 | ) | ) | = | 0 |
22653 100 | × | 1 | + | 22653 100 | ( | x | ÷ | 12 | × | 6 | ) | + | 2449 20 | ( | x | ÷ | 12 | × | 6 | ) | ( | 1 | + | ( | x | ÷ | 12 | × | 6 | ) | ) | + | 2602 25 | ( | x | ÷ | 12 | × | 3 | ) | ( | 1 | + | ( | x | ÷ | 12 | × | 6 | ) | ) | + | 3622 25 | ÷ | ( | 1 | + | x | ) | = | 0 |
22653 100 | + | 22653 100 | ( | x | ÷ | 12 | × | 6 | ) | + | 2449 20 | ( | x | ÷ | 12 | × | 6 | ) | ( | 1 | + | ( | x | ÷ | 12 | × | 6 | ) | ) | + | 2602 25 | ( | x | ÷ | 12 | × | 3 | ) | ( | 1 | + | ( | x | ÷ | 12 | × | 6 | ) | ) | + | 3622 25 | ÷ | ( | 1 | + | x | ) | × | ( | 1 | + | ( | x | ÷ | 12 | × | 3 | ) | ) | = | 0 |
| Multiply both sides of the equation by: | ( | 1 | + | x | ) |
22653 100 | ( | 1 | + | x | ) | + | 22653 100 | ( | x | ÷ | 12 | × | 6 | ) | ( | 1 | + | x | ) | + | 2449 20 | ( | x | ÷ | 12 | × | 6 | ) | ( | 1 | + | ( | x | ÷ | 12 | × | 6 | ) | ) | ( | 1 | + | x | ) | + | 2602 25 | ( | x | ÷ | 12 | × | 3 | ) | ( | 1 | + | ( | x | ÷ | 12 | × | 6 | ) | ) | = | 0 |
22653 100 | × | 1 | + | 22653 100 | x | + | 22653 100 | ( | x | ÷ | 12 | × | 6 | ) | ( | 1 | + | x | ) | + | 2449 20 | ( | x | ÷ | 12 | × | 6 | ) | ( | 1 | + | ( | x | ÷ | 12 | × | 6 | ) | ) | ( | 1 | + | x | ) | + | 2602 25 | = | 0 |
22653 100 | + | 22653 100 | x | + | 22653 100 | ( | x | ÷ | 12 | × | 6 | ) | ( | 1 | + | x | ) | + | 2449 20 | ( | x | ÷ | 12 | × | 6 | ) | ( | 1 | + | ( | x | ÷ | 12 | × | 6 | ) | ) | ( | 1 | + | x | ) | + | 2602 25 | ( | x | ÷ | 12 | × | 3 | ) | = | 0 |
22653 100 | + | 22653 100 | x | + | 22653 100 | x | ÷ | 12 | × | 6 | ( | 1 | + | x | ) | + | 2449 20 | ( | x | ÷ | 12 | × | 6 | ) | ( | 1 | + | ( | x | ÷ | 12 | × | 6 | ) | ) | ( | 1 | + | x | ) | = | 0 |
22653 100 | + | 22653 100 | x | + | 22653 200 | x | ( | 1 | + | x | ) | + | 2449 20 | ( | x | ÷ | 12 | × | 6 | ) | ( | 1 | + | ( | x | ÷ | 12 | × | 6 | ) | ) | ( | 1 | + | x | ) | + | 2602 25 | ( | x | ÷ | 12 | × | 3 | ) | = | 0 |
22653 100 | + | 22653 100 | x | + | 22653 200 | x | × | 1 | + | 22653 200 | x | x | + | 2449 20 | ( | x | ÷ | 12 | × | 6 | ) | ( | 1 | + | ( | x | ÷ | 12 | × | 6 | ) | ) | = | 0 |
22653 100 | + | 22653 100 | x | + | 22653 200 | x | + | 22653 200 | x | x | + | 2449 20 | ( | x | ÷ | 12 | × | 6 | ) | ( | 1 | + | ( | x | ÷ | 12 | × | 6 | ) | ) | ( | 1 | + | x | ) | = | 0 |
22653 100 | + | 67959 200 | x | + | 22653 200 | x | x | + | 2449 20 | ( | x | ÷ | 12 | × | 6 | ) | ( | 1 | + | ( | x | ÷ | 12 | × | 6 | ) | ) | ( | 1 | + | x | ) | + | 2602 25 | ( | x | ÷ | 12 | × | 3 | ) | = | 0 |
22653 100 | + | 67959 200 | x | + | 22653 200 | x | x | + | 2449 20 | x | ÷ | 12 | × | 6 | ( | 1 | + | ( | x | ÷ | 12 | × | 6 | ) | ) | ( | 1 | + | x | ) | = | 0 |
22653 100 | + | 67959 200 | x | + | 22653 200 | x | x | + | 2449 40 | x | ( | 1 | + | ( | x | ÷ | 12 | × | 6 | ) | ) | ( | 1 | + | x | ) | + | 2602 25 | ( | x | ÷ | 12 | × | 3 | ) | = | 0 |
22653 100 | + | 67959 200 | x | + | 22653 200 | x | x | + | 2449 40 | x | × | 1 | ( | 1 | + | x | ) | + | 2449 40 | x | = | 0 |