3129 20 | ÷ | ( | 1 | + | ( | x | ÷ | 12 | × | 3 | ) | ) | + | 6649 50 | ÷ | ( | 1 | + | ( | x | ÷ | 12 | × | 6 | ) | ) | + | 18513 100 | ÷ | ( | 1 | + | x | ) | − | 42241 100 | = | 0 |
| Multiply both sides of the equation by: | ( | 1 | + | ( | x | ÷ | 12 | × | 3 | ) | ) |
3129 20 | + | 6649 50 | ÷ | ( | 1 | + | ( | x | ÷ | 12 | × | 6 | ) | ) | × | ( | 1 | + | ( | x | ÷ | 12 | × | 3 | ) | ) | + | 18513 100 | ÷ | ( | 1 | + | x | ) | × | ( | 1 | + | ( | x | ÷ | 12 | × | 3 | ) | ) | − | 42241 100 | ( | 1 | + | ( | x | ÷ | 12 | × | 3 | ) | ) | = | 0 |
3129 20 | + | 6649 50 | ÷ | ( | 1 | + | ( | x | ÷ | 12 | × | 6 | ) | ) | × | 1 | + | 6649 50 | ÷ | ( | 1 | + | ( | x | ÷ | 12 | × | 6 | ) | ) | × | ( | x | ÷ | 12 | × | 3 | ) | + | 18513 100 | ÷ | ( | 1 | + | x | ) | × | ( | 1 | + | ( | x | ÷ | 12 | × | 3 | ) | ) | − | 42241 100 | ( | 1 | + | ( | x | ÷ | 12 | × | 3 | ) | ) | = | 0 |
3129 20 | + | 6649 50 | ÷ | ( | 1 | + | ( | x | ÷ | 12 | × | 6 | ) | ) | + | 6649 50 | ÷ | ( | 1 | + | ( | x | ÷ | 12 | × | 6 | ) | ) | × | ( | x | ÷ | 12 | × | 3 | ) | + | 18513 100 | ÷ | ( | 1 | + | x | ) | × | ( | 1 | + | ( | x | ÷ | 12 | × | 3 | ) | ) | − | 42241 100 | ( | 1 | + | ( | x | ÷ | 12 | × | 3 | ) | ) | = | 0 |
| Multiply both sides of the equation by: | ( | 1 | + | ( | x | ÷ | 12 | × | 6 | ) | ) |
3129 20 | ( | 1 | + | ( | x | ÷ | 12 | × | 6 | ) | ) | + | 6649 50 | + | 6649 50 | ÷ | ( | 1 | + | ( | x | ÷ | 12 | × | 6 | ) | ) | × | ( | x | ÷ | 12 | × | 3 | ) | ( | 1 | + | ( | x | ÷ | 12 | × | 6 | ) | ) | + | 18513 100 | ÷ | ( | 1 | + | x | ) | × | ( | 1 | + | ( | x | ÷ | 12 | × | 3 | ) | ) | ( | 1 | + | ( | x | ÷ | 12 | × | 6 | ) | ) | − | 42241 100 | = | 0 |
3129 20 | × | 1 | + | 3129 20 | ( | x | ÷ | 12 | × | 6 | ) | + | 6649 50 | + | 6649 50 | ÷ | ( | 1 | + | ( | x | ÷ | 12 | × | 6 | ) | ) | × | ( | x | ÷ | 12 | × | 3 | ) | ( | 1 | + | ( | x | ÷ | 12 | × | 6 | ) | ) | + | 18513 100 | ÷ | ( | 1 | + | x | ) | × | ( | 1 | + | ( | x | ÷ | 12 | × | 3 | ) | ) | = | 0 |
3129 20 | + | 3129 20 | ( | x | ÷ | 12 | × | 6 | ) | + | 6649 50 | + | 6649 50 | ÷ | ( | 1 | + | ( | x | ÷ | 12 | × | 6 | ) | ) | × | ( | x | ÷ | 12 | × | 3 | ) | ( | 1 | + | ( | x | ÷ | 12 | × | 6 | ) | ) | + | 18513 100 | ÷ | ( | 1 | + | x | ) | × | ( | 1 | + | ( | x | ÷ | 12 | × | 3 | ) | ) | ( | 1 | + | ( | x | ÷ | 12 | × | 6 | ) | ) | = | 0 |
28943 100 | + | 3129 20 | ( | x | ÷ | 12 | × | 6 | ) | + | 6649 50 | ÷ | ( | 1 | + | ( | x | ÷ | 12 | × | 6 | ) | ) | × | ( | x | ÷ | 12 | × | 3 | ) | ( | 1 | + | ( | x | ÷ | 12 | × | 6 | ) | ) | + | 18513 100 | ÷ | ( | 1 | + | x | ) | × | ( | 1 | + | ( | x | ÷ | 12 | × | 3 | ) | ) | ( | 1 | + | ( | x | ÷ | 12 | × | 6 | ) | ) | − | 42241 100 | = | 0 |
| Multiply both sides of the equation by: | ( | 1 | + | ( | x | ÷ | 12 | × | 6 | ) | ) |
28943 100 | ( | 1 | + | ( | x | ÷ | 12 | × | 6 | ) | ) | + | 3129 20 | ( | x | ÷ | 12 | × | 6 | ) | ( | 1 | + | ( | x | ÷ | 12 | × | 6 | ) | ) | + | 6649 50 | ( | x | ÷ | 12 | × | 3 | ) | ( | 1 | + | ( | x | ÷ | 12 | × | 6 | ) | ) | + | 18513 100 | ÷ | ( | 1 | + | x | ) | × | ( | 1 | + | ( | x | ÷ | 12 | × | 3 | ) | ) | ( | 1 | + | ( | x | ÷ | 12 | × | 6 | ) | ) | = | 0 |
28943 100 | × | 1 | + | 28943 100 | ( | x | ÷ | 12 | × | 6 | ) | + | 3129 20 | ( | x | ÷ | 12 | × | 6 | ) | ( | 1 | + | ( | x | ÷ | 12 | × | 6 | ) | ) | + | 6649 50 | ( | x | ÷ | 12 | × | 3 | ) | ( | 1 | + | ( | x | ÷ | 12 | × | 6 | ) | ) | + | 18513 100 | ÷ | ( | 1 | + | x | ) | = | 0 |
28943 100 | + | 28943 100 | ( | x | ÷ | 12 | × | 6 | ) | + | 3129 20 | ( | x | ÷ | 12 | × | 6 | ) | ( | 1 | + | ( | x | ÷ | 12 | × | 6 | ) | ) | + | 6649 50 | ( | x | ÷ | 12 | × | 3 | ) | ( | 1 | + | ( | x | ÷ | 12 | × | 6 | ) | ) | + | 18513 100 | ÷ | ( | 1 | + | x | ) | × | ( | 1 | + | ( | x | ÷ | 12 | × | 3 | ) | ) | = | 0 |
| Multiply both sides of the equation by: | ( | 1 | + | x | ) |
28943 100 | ( | 1 | + | x | ) | + | 28943 100 | ( | x | ÷ | 12 | × | 6 | ) | ( | 1 | + | x | ) | + | 3129 20 | ( | x | ÷ | 12 | × | 6 | ) | ( | 1 | + | ( | x | ÷ | 12 | × | 6 | ) | ) | ( | 1 | + | x | ) | + | 6649 50 | ( | x | ÷ | 12 | × | 3 | ) | ( | 1 | + | ( | x | ÷ | 12 | × | 6 | ) | ) | = | 0 |
28943 100 | × | 1 | + | 28943 100 | x | + | 28943 100 | ( | x | ÷ | 12 | × | 6 | ) | ( | 1 | + | x | ) | + | 3129 20 | ( | x | ÷ | 12 | × | 6 | ) | ( | 1 | + | ( | x | ÷ | 12 | × | 6 | ) | ) | ( | 1 | + | x | ) | + | 6649 50 | = | 0 |
28943 100 | + | 28943 100 | x | + | 28943 100 | ( | x | ÷ | 12 | × | 6 | ) | ( | 1 | + | x | ) | + | 3129 20 | ( | x | ÷ | 12 | × | 6 | ) | ( | 1 | + | ( | x | ÷ | 12 | × | 6 | ) | ) | ( | 1 | + | x | ) | + | 6649 50 | ( | x | ÷ | 12 | × | 3 | ) | = | 0 |
28943 100 | + | 28943 100 | x | + | 28943 100 | x | ÷ | 12 | × | 6 | ( | 1 | + | x | ) | + | 3129 20 | ( | x | ÷ | 12 | × | 6 | ) | ( | 1 | + | ( | x | ÷ | 12 | × | 6 | ) | ) | ( | 1 | + | x | ) | = | 0 |
28943 100 | + | 28943 100 | x | + | 28943 200 | x | ( | 1 | + | x | ) | + | 3129 20 | ( | x | ÷ | 12 | × | 6 | ) | ( | 1 | + | ( | x | ÷ | 12 | × | 6 | ) | ) | ( | 1 | + | x | ) | + | 6649 50 | ( | x | ÷ | 12 | × | 3 | ) | = | 0 |
28943 100 | + | 28943 100 | x | + | 28943 200 | x | × | 1 | + | 28943 200 | x | x | + | 3129 20 | ( | x | ÷ | 12 | × | 6 | ) | ( | 1 | + | ( | x | ÷ | 12 | × | 6 | ) | ) | = | 0 |
28943 100 | + | 28943 100 | x | + | 28943 200 | x | + | 28943 200 | x | x | + | 3129 20 | ( | x | ÷ | 12 | × | 6 | ) | ( | 1 | + | ( | x | ÷ | 12 | × | 6 | ) | ) | ( | 1 | + | x | ) | = | 0 |
28943 100 | + | 86829 200 | x | + | 28943 200 | x | x | + | 3129 20 | ( | x | ÷ | 12 | × | 6 | ) | ( | 1 | + | ( | x | ÷ | 12 | × | 6 | ) | ) | ( | 1 | + | x | ) | + | 6649 50 | ( | x | ÷ | 12 | × | 3 | ) | = | 0 |
28943 100 | + | 86829 200 | x | + | 28943 200 | x | x | + | 3129 20 | x | ÷ | 12 | × | 6 | ( | 1 | + | ( | x | ÷ | 12 | × | 6 | ) | ) | ( | 1 | + | x | ) | = | 0 |
28943 100 | + | 86829 200 | x | + | 28943 200 | x | x | + | 3129 40 | x | ( | 1 | + | ( | x | ÷ | 12 | × | 6 | ) | ) | ( | 1 | + | x | ) | + | 6649 50 | ( | x | ÷ | 12 | × | 3 | ) | = | 0 |
28943 100 | + | 86829 200 | x | + | 28943 200 | x | x | + | 3129 40 | x | × | 1 | ( | 1 | + | x | ) | + | 3129 40 | x | = | 0 |