2743 25 | ÷ | ( | 1 | + | ( | x | ÷ | 12 | × | 3 | ) | ) | + | 4663 50 | ÷ | ( | 1 | + | ( | x | ÷ | 12 | × | 6 | ) | ) | + | 2597 20 | ÷ | ( | 1 | + | x | ) | − | 1185 4 | = | 0 |
| Multiply both sides of the equation by: | ( | 1 | + | ( | x | ÷ | 12 | × | 3 | ) | ) |
2743 25 | + | 4663 50 | ÷ | ( | 1 | + | ( | x | ÷ | 12 | × | 6 | ) | ) | × | ( | 1 | + | ( | x | ÷ | 12 | × | 3 | ) | ) | + | 2597 20 | ÷ | ( | 1 | + | x | ) | × | ( | 1 | + | ( | x | ÷ | 12 | × | 3 | ) | ) | − | 1185 4 | ( | 1 | + | ( | x | ÷ | 12 | × | 3 | ) | ) | = | 0 |
2743 25 | + | 4663 50 | ÷ | ( | 1 | + | ( | x | ÷ | 12 | × | 6 | ) | ) | × | 1 | + | 4663 50 | ÷ | ( | 1 | + | ( | x | ÷ | 12 | × | 6 | ) | ) | × | ( | x | ÷ | 12 | × | 3 | ) | + | 2597 20 | ÷ | ( | 1 | + | x | ) | × | ( | 1 | + | ( | x | ÷ | 12 | × | 3 | ) | ) | − | 1185 4 | ( | 1 | + | ( | x | ÷ | 12 | × | 3 | ) | ) | = | 0 |
2743 25 | + | 4663 50 | ÷ | ( | 1 | + | ( | x | ÷ | 12 | × | 6 | ) | ) | + | 4663 50 | ÷ | ( | 1 | + | ( | x | ÷ | 12 | × | 6 | ) | ) | × | ( | x | ÷ | 12 | × | 3 | ) | + | 2597 20 | ÷ | ( | 1 | + | x | ) | × | ( | 1 | + | ( | x | ÷ | 12 | × | 3 | ) | ) | − | 1185 4 | ( | 1 | + | ( | x | ÷ | 12 | × | 3 | ) | ) | = | 0 |
| Multiply both sides of the equation by: | ( | 1 | + | ( | x | ÷ | 12 | × | 6 | ) | ) |
2743 25 | ( | 1 | + | ( | x | ÷ | 12 | × | 6 | ) | ) | + | 4663 50 | + | 4663 50 | ÷ | ( | 1 | + | ( | x | ÷ | 12 | × | 6 | ) | ) | × | ( | x | ÷ | 12 | × | 3 | ) | ( | 1 | + | ( | x | ÷ | 12 | × | 6 | ) | ) | + | 2597 20 | ÷ | ( | 1 | + | x | ) | × | ( | 1 | + | ( | x | ÷ | 12 | × | 3 | ) | ) | ( | 1 | + | ( | x | ÷ | 12 | × | 6 | ) | ) | − | 1185 4 | = | 0 |
2743 25 | × | 1 | + | 2743 25 | ( | x | ÷ | 12 | × | 6 | ) | + | 4663 50 | + | 4663 50 | ÷ | ( | 1 | + | ( | x | ÷ | 12 | × | 6 | ) | ) | × | ( | x | ÷ | 12 | × | 3 | ) | ( | 1 | + | ( | x | ÷ | 12 | × | 6 | ) | ) | + | 2597 20 | ÷ | ( | 1 | + | x | ) | × | ( | 1 | + | ( | x | ÷ | 12 | × | 3 | ) | ) | = | 0 |
2743 25 | + | 2743 25 | ( | x | ÷ | 12 | × | 6 | ) | + | 4663 50 | + | 4663 50 | ÷ | ( | 1 | + | ( | x | ÷ | 12 | × | 6 | ) | ) | × | ( | x | ÷ | 12 | × | 3 | ) | ( | 1 | + | ( | x | ÷ | 12 | × | 6 | ) | ) | + | 2597 20 | ÷ | ( | 1 | + | x | ) | × | ( | 1 | + | ( | x | ÷ | 12 | × | 3 | ) | ) | ( | 1 | + | ( | x | ÷ | 12 | × | 6 | ) | ) | = | 0 |
10149 50 | + | 2743 25 | ( | x | ÷ | 12 | × | 6 | ) | + | 4663 50 | ÷ | ( | 1 | + | ( | x | ÷ | 12 | × | 6 | ) | ) | × | ( | x | ÷ | 12 | × | 3 | ) | ( | 1 | + | ( | x | ÷ | 12 | × | 6 | ) | ) | + | 2597 20 | ÷ | ( | 1 | + | x | ) | × | ( | 1 | + | ( | x | ÷ | 12 | × | 3 | ) | ) | ( | 1 | + | ( | x | ÷ | 12 | × | 6 | ) | ) | − | 1185 4 | = | 0 |
| Multiply both sides of the equation by: | ( | 1 | + | ( | x | ÷ | 12 | × | 6 | ) | ) |
10149 50 | ( | 1 | + | ( | x | ÷ | 12 | × | 6 | ) | ) | + | 2743 25 | ( | x | ÷ | 12 | × | 6 | ) | ( | 1 | + | ( | x | ÷ | 12 | × | 6 | ) | ) | + | 4663 50 | ( | x | ÷ | 12 | × | 3 | ) | ( | 1 | + | ( | x | ÷ | 12 | × | 6 | ) | ) | + | 2597 20 | ÷ | ( | 1 | + | x | ) | × | ( | 1 | + | ( | x | ÷ | 12 | × | 3 | ) | ) | ( | 1 | + | ( | x | ÷ | 12 | × | 6 | ) | ) | = | 0 |
10149 50 | × | 1 | + | 10149 50 | ( | x | ÷ | 12 | × | 6 | ) | + | 2743 25 | ( | x | ÷ | 12 | × | 6 | ) | ( | 1 | + | ( | x | ÷ | 12 | × | 6 | ) | ) | + | 4663 50 | ( | x | ÷ | 12 | × | 3 | ) | ( | 1 | + | ( | x | ÷ | 12 | × | 6 | ) | ) | + | 2597 20 | ÷ | ( | 1 | + | x | ) | = | 0 |
10149 50 | + | 10149 50 | ( | x | ÷ | 12 | × | 6 | ) | + | 2743 25 | ( | x | ÷ | 12 | × | 6 | ) | ( | 1 | + | ( | x | ÷ | 12 | × | 6 | ) | ) | + | 4663 50 | ( | x | ÷ | 12 | × | 3 | ) | ( | 1 | + | ( | x | ÷ | 12 | × | 6 | ) | ) | + | 2597 20 | ÷ | ( | 1 | + | x | ) | × | ( | 1 | + | ( | x | ÷ | 12 | × | 3 | ) | ) | = | 0 |
| Multiply both sides of the equation by: | ( | 1 | + | x | ) |
10149 50 | ( | 1 | + | x | ) | + | 10149 50 | ( | x | ÷ | 12 | × | 6 | ) | ( | 1 | + | x | ) | + | 2743 25 | ( | x | ÷ | 12 | × | 6 | ) | ( | 1 | + | ( | x | ÷ | 12 | × | 6 | ) | ) | ( | 1 | + | x | ) | + | 4663 50 | ( | x | ÷ | 12 | × | 3 | ) | ( | 1 | + | ( | x | ÷ | 12 | × | 6 | ) | ) | = | 0 |
10149 50 | × | 1 | + | 10149 50 | x | + | 10149 50 | ( | x | ÷ | 12 | × | 6 | ) | ( | 1 | + | x | ) | + | 2743 25 | ( | x | ÷ | 12 | × | 6 | ) | ( | 1 | + | ( | x | ÷ | 12 | × | 6 | ) | ) | ( | 1 | + | x | ) | + | 4663 50 | = | 0 |
10149 50 | + | 10149 50 | x | + | 10149 50 | ( | x | ÷ | 12 | × | 6 | ) | ( | 1 | + | x | ) | + | 2743 25 | ( | x | ÷ | 12 | × | 6 | ) | ( | 1 | + | ( | x | ÷ | 12 | × | 6 | ) | ) | ( | 1 | + | x | ) | + | 4663 50 | ( | x | ÷ | 12 | × | 3 | ) | = | 0 |
10149 50 | + | 10149 50 | x | + | 10149 50 | x | ÷ | 12 | × | 6 | ( | 1 | + | x | ) | + | 2743 25 | ( | x | ÷ | 12 | × | 6 | ) | ( | 1 | + | ( | x | ÷ | 12 | × | 6 | ) | ) | ( | 1 | + | x | ) | = | 0 |
10149 50 | + | 10149 50 | x | + | 10149 100 | x | ( | 1 | + | x | ) | + | 2743 25 | ( | x | ÷ | 12 | × | 6 | ) | ( | 1 | + | ( | x | ÷ | 12 | × | 6 | ) | ) | ( | 1 | + | x | ) | + | 4663 50 | ( | x | ÷ | 12 | × | 3 | ) | = | 0 |
10149 50 | + | 10149 50 | x | + | 10149 100 | x | × | 1 | + | 10149 100 | x | x | + | 2743 25 | ( | x | ÷ | 12 | × | 6 | ) | ( | 1 | + | ( | x | ÷ | 12 | × | 6 | ) | ) | = | 0 |
10149 50 | + | 10149 50 | x | + | 10149 100 | x | + | 10149 100 | x | x | + | 2743 25 | ( | x | ÷ | 12 | × | 6 | ) | ( | 1 | + | ( | x | ÷ | 12 | × | 6 | ) | ) | ( | 1 | + | x | ) | = | 0 |
10149 50 | + | 30447 100 | x | + | 10149 100 | x | x | + | 2743 25 | ( | x | ÷ | 12 | × | 6 | ) | ( | 1 | + | ( | x | ÷ | 12 | × | 6 | ) | ) | ( | 1 | + | x | ) | + | 4663 50 | ( | x | ÷ | 12 | × | 3 | ) | = | 0 |
10149 50 | + | 30447 100 | x | + | 10149 100 | x | x | + | 2743 25 | x | ÷ | 12 | × | 6 | ( | 1 | + | ( | x | ÷ | 12 | × | 6 | ) | ) | ( | 1 | + | x | ) | = | 0 |
10149 50 | + | 30447 100 | x | + | 10149 100 | x | x | + | 2743 50 | x | ( | 1 | + | ( | x | ÷ | 12 | × | 6 | ) | ) | ( | 1 | + | x | ) | + | 4663 50 | ( | x | ÷ | 12 | × | 3 | ) | = | 0 |
10149 50 | + | 30447 100 | x | + | 10149 100 | x | x | + | 2743 50 | x | × | 1 | ( | 1 | + | x | ) | + | 2743 50 | x | = | 0 |