Mathematics
         
语言:中文    Language:English
On line Solution of Monovariate Equation:
    Input any unary equation directly, and then click the "Next" button to obtain the solution of the equation.
    It supports equations that contain mathematical functions.
    Current location:Equations > Monovariate Equation > The history of univariate equation calculation > Answer

    Overview: 1 questions will be solved this time.Among them
           ☆1 equations

[ 1/1 Equation]
    Work: Find the solution of equation 5.815(x-20) = (0.18044(438-x)/0.22314) .
    Question type: Equation
    Solution:Original question:
     
1163
200
( x 20) = (
4511
25000
(438 x ) ÷
11157
50000
)
    Remove the bracket on the left of the equation:
     Left side of the equation =
1163
200
x
1163
200
× 20
                                             =
1163
200
x
1163
10
    The equation is transformed into :
     
1163
200
x
1163
10
= (
4511
25000
(438 x ) ÷
11157
50000
)
    Remove the bracket on the right of the equation:
     Right side of the equation =
4511
25000
(438 x ) ÷
11157
50000
                                               =
9022
11157
(438 x )
                                               =
9022
11157
× 438
9022
11157
x
                                               =
1317212
3719
9022
11157
x
    The equation is transformed into :
     
1163
200
x
1163
10
=
1317212
3719
9022
11157
x

    Transposition :
     
1163
200
x +
9022
11157
x =
1317212
3719
+
1163
10

    Combine the items on the left of the equation:
     
14779991
2231400
x =
1317212
3719
+
1163
10

    Combine the items on the right of the equation:
     
14779991
2231400
x =
17497317
37190

    The coefficient of the unknown number is reduced to 1 :
      x =
17497317
37190
÷
14779991
2231400
        =
17497317
37190
×
2231400
14779991
        =
17497317
3719
×
223140
14779991

    We obtained :
      x =
3904351315380
54966786529
    This is the solution of the equation.



Your problem has not been solved here? Please go to the Hot Problems section!





  New addition:Lenders ToolBox module(Specific location:Math OP > Lenders ToolBox ),welcome。