Mathematics
         
语言:中文    Language:English
On line Solution of Monovariate Equation:
    Input any unary equation directly, and then click the "Next" button to obtain the solution of the equation.
    It supports equations that contain mathematical functions.
    Current location:Equations > Monovariate Equation > The history of univariate equation calculation > Answer

    Overview: 1 questions will be solved this time.Among them
           ☆1 equations

[ 1/1 Equation]
    Work: Find the solution of equation (500-(x-50)10)(x-40) = 8750 .
    Question type: Equation
    Solution:Original question:
     (500( x 50) × 10)( x 40) = 8750
    Remove the bracket on the left of the equation:
     Left side of the equation = 500( x 40)( x 50) × 10( x 40)
                                             = 500 x 500 × 40( x 50) × 10( x 40)
                                             = 500 x 20000( x 50) × 10( x 40)
                                             = 500 x 20000 x × 10( x 40) + 50 × 10( x 40)
                                             = 500 x 20000 x × 10( x 40) + 500( x 40)
                                             = 500 x 20000 x × 10 x + x × 10 × 40 + 500( x 40)
                                             = 500 x 20000 x × 10 x + x × 400 + 500( x 40)
                                             = 900 x 20000 x × 10 x + 500( x 40)
                                             = 900 x 20000 x × 10 x + 500 x 500 × 40
                                             = 900 x 20000 x × 10 x + 500 x 20000
                                             = 1400 x 40000 x × 10 x
    The equation is transformed into :
     1400 x 40000 x × 10 x = 8750

    After the equation is converted into a general formula, it is converted into:
    ( x - 65 )( x - 75 )=0
    From
        x - 65 = 0
        x - 75 = 0

    it is concluded that::
        x1=65
        x2=75
    
    There are 2 solution(s).


解一元二次方程的详细方法请参阅:《一元二次方程的解法》



Your problem has not been solved here? Please go to the Hot Problems section!





  New addition:Lenders ToolBox module(Specific location:Math OP > Lenders ToolBox ),welcome。