Mathematics
         
语言:中文    Language:English
                                Equations   
Fold
                                Unary equation
                                Multivariate equation
                                Math OP  
Unfold
                                Linear algebra      
Unfold
                                Derivative function
                                Function image
                                Hot issues
On line Solution of Monovariate Equation:
    Input any unary equation directly, and then click the "Next" button to obtain the solution of the equation.
    It supports equations that contain mathematical functions.
    Current location:Equations > Monovariate Equation > The history of univariate equation calculation > Answer
    Overview: 1 questions will be solved this time.Among them
           ☆1 equations

[ 1/1 Equation]
    Work: Find the solution of equation 67(164.13-y)+57y = 10.28 .
    Question type: Equation
    Solution:Original question:
     67(
16413
100
y ) + 57 y =
257
25
    Remove the bracket on the left of the equation:
     Left side of the equation = 67 ×
16413
100
67 y + 57 y
                                             =
1099671
100
67 y + 57 y
                                             =
1099671
100
10 y
    The equation is transformed into :
     
1099671
100
10 y =
257
25

    Transposition :
      - 10 y =
257
25
1099671
100

    Combine the items on the right of the equation:
      - 10 y = -
1098643
100

    By shifting the terms and changing the symbols on toth sides of the equation, we obtain :
     
1098643
100
= 10 y

    If the left side of the equation is equal to the right side, then the right side must also be equal to the left side, that is :
     10 y =
1098643
100

    The coefficient of the unknown number is reduced to 1 :
      y =
1098643
100
÷ 10
        =
1098643
100
×
1
10

    We obtained :
      y =
1098643
1000
    This is the solution of the equation.

    Convert the result to decimal form :
      y = 1098.643



Your problem has not been solved here? Please go to the Hot Problems section!





  New addition:Lenders ToolBox module(Specific location:Math OP > Lenders ToolBox ),welcome。