Mathematics
         
语言:中文    Language:English
                                Equations   
Fold
                                Unary equation
                                Multivariate equation
                                Math OP  
Unfold
                                Linear algebra      
Unfold
                                Derivative function
                                Function image
                                Hot issues
On line Solution of Monovariate Equation:
    Input any unary equation directly, and then click the "Next" button to obtain the solution of the equation.
    It supports equations that contain mathematical functions.
    Current location:Equations > Monovariate Equation > The history of univariate equation calculation > Answer
    Overview: 1 questions will be solved this time.Among them
           ☆1 equations

[ 1/1 Equation]
    Work: Find the solution of equation 10 = (1308.97+0+X+((1308.97+0+X)/(602+1))*(-990)+2469.98)/(602+1-990+360) .
    Question type: Equation
    Solution:Original question:
     10 = (
130897
100
+ 0 + X + ((
130897
100
+ 0 + X ) ÷ (602 + 1))( - 990) +
123499
50
) ÷ (602 + 1990 + 360)
     Multiply both sides of the equation by:(602 + 1990 + 360)
     10(602 + 1990 + 360) = (
130897
100
+ 0 + X + ((
130897
100
+ 0 + X ) ÷ (602 + 1))( - 990) +
123499
50
)
    Remove a bracket on the left of the equation::
     10 × 602 + 10 × 110 × 990 + 10 × 360 = (
130897
100
+ 0 + X + ((
130897
100
+ 0 + X ) ÷ (602 + 1))( - 990) +
123499
50
)
    Remove a bracket on the right of the equation::
     10 × 602 + 10 × 110 × 990 + 10 × 360 =
130897
100
+ 0 + X + ((
130897
100
+ 0 + X ) ÷ (602 + 1))( - 990) +
123499
50
    The equation is reduced to :
     6020 + 109900 + 3600 =
130897
100
+ 0 + X + ((
130897
100
+ 0 + X ) ÷ (602 + 1))( - 990) +
123499
50
    The equation is reduced to :
      - 270 =
75579
20
+ X + ((
130897
100
+ 0 + X ) ÷ (602 + 1))( - 990)
    Remove a bracket on the right of the equation::
      - 270 =
75579
20
+ X + (
130897
100
+ 0 + X ) ÷ (602 + 1) × ( - 990)
     Multiply both sides of the equation by:(602 + 1)
      - 270(602 + 1) =
75579
20
(602 + 1) + X (602 + 1) + (
130897
100
+ 0 + X )( - 990)
    Remove a bracket on the left of the equation:
      - 270 × 602270 × 1 =
75579
20
(602 + 1) + X (602 + 1) + (
130897
100
+ 0 + X )( - 990)
    Remove a bracket on the right of the equation::
      - 270 × 602270 × 1 =
75579
20
× 602 +
75579
20
× 1 + X (602 + 1) + (
130897
100
+ 0 + X )( - 990)
    The equation is reduced to :
      - 162540270 =
22749279
10
+
75579
20
+ X (602 + 1) + (
130897
100
+ 0 + X )( - 990)
    The equation is reduced to :
      - 162810 =
45574137
20
+ X (602 + 1) + (
130897
100
+ 0 + X )( - 990)
    Remove a bracket on the right of the equation::
      - 162810 =
45574137
20
+ X × 602 + X × 1 + (
130897
100
+ 0 + X )( - 990)
    The equation is reduced to :
      - 162810 =
45574137
20
+ 603 X + (
130897
100
+ 0 + X )( - 990)
    Remove a bracket on the right of the equation::
      - 162810 =
45574137
20
+ 603 X +
130897
100
( - 990) + 0( - 990) + X ( - 990)
    Remove a bracket on the right of the equation::
      - 162810 =
45574137
20
+ 603 X
130897
100
× 990 + X ( - 990)
    The equation is reduced to :
      - 162810 =
45574137
20
+ 603 X
12958803
10
+ X ( - 990)
    The equation is reduced to :
      - 162810 =
19656531
20
+ 603 X + X ( - 990)
    Remove a bracket on the right of the equation::
      - 162810 =
19656531
20
+ 603 X X × 990
    The equation is reduced to :
      - 162810 =
19656531
20
387 X

    Transposition :
     387 X =
19656531
20
+ 162810

    Combine the items on the right of the equation:
     387 X =
22912731
20

    The coefficient of the unknown number is reduced to 1 :
      X =
22912731
20
÷ 387
        =
22912731
20
×
1
387
        =
2545859
20
×
1
43

    We obtained :
      X =
2545859
860
    This is the solution of the equation.

    Convert the result to decimal form :
      X = 2960.301163



Your problem has not been solved here? Please go to the Hot Problems section!





  New addition:Lenders ToolBox module(Specific location:Math OP > Lenders ToolBox ),welcome。