Mathematics
         
语言:中文    Language:English
                                Equations   
Fold
                                Unary equation
                                Multivariate equation
                                Math OP  
Unfold
                                Linear algebra      
Unfold
                                Derivative function
                                Function image
                                Hot issues
On line Solution of Monovariate Equation:
    Input any unary equation directly, and then click the "Next" button to obtain the solution of the equation.
    It supports equations that contain mathematical functions.
    Current location:Equations > Monovariate Equation > The history of univariate equation calculation > Answer
    Overview: 1 questions will be solved this time.Among them
           ☆1 equations

[ 1/1 Equation]
    Work: Find the solution of equation [(18+4y)/5]1*[(18+4y)/5]+[(32-4y)/5]*[(32-4y)/5]-(8-y)*(8-y) = 0 .
    Question type: Equation
    Solution:Original question:
     ((18 + 4 y ) ÷ 5) × 1((18 + 4 y ) ÷ 5) + ((324 y ) ÷ 5)((324 y ) ÷ 5)(8 y )(8 y ) = 0
    Remove the bracket on the left of the equation:
     Left side of the equation = (18 + 4 y ) ÷ 5 × 1((18 + 4 y ) ÷ 5) + ((324 y ) ÷ 5)((324 y ) ÷ 5)(8 y )(8 y )
                                             = (18 + 4 y ) ×
1
5
((18 + 4 y ) ÷ 5) + ((324 y ) ÷ 5)((324 y ) ÷ 5)(8 y )(8 y )
                                             = 18 ×
1
5
((18 + 4 y ) ÷ 5) + 4 y ×
1
5
((18 + 4 y ) ÷ 5) + ((324 y ) ÷ 5)((324 y ) ÷ 5)(8 y )(8 y )
                                             =
18
5
((18 + 4 y ) ÷ 5) +
4
5
y ((18 + 4 y ) ÷ 5) + ((324 y ) ÷ 5)((324 y ) ÷ 5)(8 y )(8 y )
                                             =
18
5
(18 + 4 y ) ÷ 5 +
4
5
y ((18 + 4 y ) ÷ 5) + ((324 y ) ÷ 5)((324 y ) ÷ 5)(8 y )(8 y )
                                             =
18
25
(18 + 4 y ) +
4
5
y ((18 + 4 y ) ÷ 5) + ((324 y ) ÷ 5)((324 y ) ÷ 5)(8 y )(8 y )
                                             =
18
25
× 18 +
18
25
× 4 y +
4
5
y ((18 + 4 y ) ÷ 5) + ((324 y ) ÷ 5)((324 y ) ÷ 5)(8 y )(8 y )
                                             =
324
25
+
72
25
y +
4
5
y ((18 + 4 y ) ÷ 5) + ((324 y ) ÷ 5)((324 y ) ÷ 5)(8 y )(8 y )
                                             =
324
25
+
72
25
y +
4
5
y (18 + 4 y ) ÷ 5 + ((324 y ) ÷ 5)((324 y ) ÷ 5)(8 y )(8 y )
                                             =
324
25
+
72
25
y +
4
25
y (18 + 4 y ) + ((324 y ) ÷ 5)((324 y ) ÷ 5)(8 y )(8 y )
                                             =
324
25
+
72
25
y +
4
25
y × 18 +
4
25
y × 4 y + ((324 y ) ÷ 5)((324 y ) ÷ 5)
                                             =
324
25
+
72
25
y +
72
25
y +
16
25
y y + ((324 y ) ÷ 5)((324 y ) ÷ 5)(8 y )(8 y )
                                             =
324
25
+
144
25
y +
16
25
y y + ((324 y ) ÷ 5)((324 y ) ÷ 5)(8 y )(8 y )
                                             =
324
25
+
144
25
y +
16
25
y y + (324 y ) ÷ 5 × ((324 y ) ÷ 5)(8 y )(8 y )
                                             =
324
25
+
144
25
y +
16
25
y y + 32 ×
1
5
((324 y ) ÷ 5)4 y ×
1
5
                                             =
324
25
+
144
25
y +
16
25
y y +
32
5
((324 y ) ÷ 5)
4
5
y ((324 y ) ÷ 5)(8 y )
                                             =
324
25
+
144
25
y +
16
25
y y +
32
5
(324 y ) ÷ 5
4
5
y ((324 y ) ÷ 5)
                                             =
324
25
+
144
25
y +
16
25
y y +
32
25
(324 y )
4
5
y ((324 y ) ÷ 5)(8 y )
                                             =
324
25
+
144
25
y +
16
25
y y +
32
25
× 32
32
25
× 4 y
4
5
                                             =
324
25
+
144
25
y +
16
25
y y +
1024
25
128
25
y
4
5
y ((324 y ) ÷ 5)
                                             =
1348
25
+
16
25
y +
16
25
y y
4
5
y ((324 y ) ÷ 5)(8 y )(8 y )
                                             =
1348
25
+
16
25
y +
16
25
y y
4
5
y (324 y ) ÷ 5(8 y )(8 y )
                                             =
1348
25
+
16
25
y +
16
25
y y
4
25
y (324 y )(8 y )(8 y )
                                             =
1348
25
+
16
25
y +
16
25
y y
4
25
y × 32 +
4
25
y × 4
                                             =
1348
25
+
16
25
y +
16
25
y y
128
25
y +
16
25
y y (8 y )

    After the equation is converted into a general formula, it is converted into:
    ( y + 42 )( 7y - 6 )=0
    From
        y + 42 = 0
        7y - 6 = 0

    it is concluded that::
        y1=-42
        y2=
6
7
    
    There are 2 solution(s).


解一元二次方程的详细方法请参阅:《一元二次方程的解法》



Your problem has not been solved here? Please go to the Hot Problems section!





  New addition:Lenders ToolBox module(Specific location:Math OP > Lenders ToolBox ),welcome。