Mathematics
         
语言:中文    Language:English
                                Equations   
Fold
                                Unary equation
                                Multivariate equation
                                Math OP  
Unfold
                                Linear algebra      
Unfold
                                Derivative function
                                Function image
                                Hot issues
On line Solution of Monovariate Equation:
    Input any unary equation directly, and then click the "Next" button to obtain the solution of the equation.
    It supports equations that contain mathematical functions.
    Current location:Equations > Monovariate Equation > The history of univariate equation calculation > Answer
    Overview: 1 questions will be solved this time.Among them
           ☆1 equations

[ 1/1 Equation]
    Work: Find the solution of equation 2.173 = (3.376+1.976X)/(X+1) .
    Question type: Equation
    Solution:Original question:
     
2173
1000
= (
422
125
+
247
125
X ) ÷ ( X + 1)
     Multiply both sides of the equation by:( X + 1)
     
2173
1000
( X + 1) = (
422
125
+
247
125
X )
    Remove a bracket on the left of the equation::
     
2173
1000
X +
2173
1000
× 1 = (
422
125
+
247
125
X )
    Remove a bracket on the right of the equation::
     
2173
1000
X +
2173
1000
× 1 =
422
125
+
247
125
X
    The equation is reduced to :
     
2173
1000
X +
2173
1000
=
422
125
+
247
125
X

    Transposition :
     
2173
1000
X
247
125
X =
422
125
2173
1000

    Combine the items on the left of the equation:
     
197
1000
X =
422
125
2173
1000

    Combine the items on the right of the equation:
     
197
1000
X =
1203
1000

    The coefficient of the unknown number is reduced to 1 :
      X =
1203
1000
÷
197
1000
        =
1203
1000
×
1000
197
        = 1203 ×
1
197

    We obtained :
      X =
1203
197
    This is the solution of the equation.

    Convert the result to decimal form :
      X = 6.106599



Your problem has not been solved here? Please go to the Hot Problems section!





  New addition:Lenders ToolBox module(Specific location:Math OP > Lenders ToolBox ),welcome。