Mathematics
         
语言:中文    Language:English
                                Equations   
Fold
                                Unary equation
                                Multivariate equation
                                Math OP  
Unfold
                                Linear algebra      
Unfold
                                Derivative function
                                Function image
                                Hot issues
On line Solution of Monovariate Equation:
    Input any unary equation directly, and then click the "Next" button to obtain the solution of the equation.
    It supports equations that contain mathematical functions.
    Current location:Equations > Monovariate Equation > The history of univariate equation calculation > Answer
    Overview: 1 questions will be solved this time.Among them
           ☆1 equations

[ 1/1 Equation]
    Work: Find the solution of equation (163+279)/31*x+240.5/31*(x+15)+124/31*(x+30) = 1713 .
    Question type: Equation
    Solution:Original question:
     (163 + 279) ÷ 31 × x +
481
2
÷ 31 × ( x + 15) + 124 ÷ 31 × ( x + 30) = 1713
     Left side of the equation = (163 + 279) ×
1
31
x +
481
62
( x + 15) + 4( x + 30)
    The equation is transformed into :
     (163 + 279) ×
1
31
x +
481
62
( x + 15) + 4( x + 30) = 1713
    Remove the bracket on the left of the equation:
     Left side of the equation = 163 ×
1
31
x + 279 ×
1
31
x +
481
62
( x + 15) + 4( x + 30)
                                             =
163
31
x + 9 x +
481
62
( x + 15) + 4( x + 30)
                                             =
442
31
x +
481
62
( x + 15) + 4( x + 30)
                                             =
442
31
x +
481
62
x +
481
62
× 15 + 4( x + 30)
                                             =
442
31
x +
481
62
x +
7215
62
+ 4( x + 30)
                                             =
1365
62
x +
7215
62
+ 4( x + 30)
                                             =
1365
62
x +
7215
62
+ 4 x + 4 × 30
                                             =
1365
62
x +
7215
62
+ 4 x + 120
                                             =
1613
62
x +
14655
62
    The equation is transformed into :
     
1613
62
x +
14655
62
= 1713

    Transposition :
     
1613
62
x = 1713
14655
62

    Combine the items on the right of the equation:
     
1613
62
x =
91551
62

    The coefficient of the unknown number is reduced to 1 :
      x =
91551
62
÷
1613
62
        =
91551
62
×
62
1613
        = 91551 ×
1
1613

    We obtained :
      x =
91551
1613
    This is the solution of the equation.

    Convert the result to decimal form :
      x = 56.758215



Your problem has not been solved here? Please go to the Hot Problems section!





  New addition:Lenders ToolBox module(Specific location:Math OP > Lenders ToolBox ),welcome。