Mathematics
         
语言:中文    Language:English
                                Equations   
Fold
                                Unary equation
                                Multivariate equation
                                Math OP  
Unfold
                                Linear algebra      
Unfold
                                Derivative function
                                Function image
                                Hot issues
On line Solution of Monovariate Equation:
    Input any unary equation directly, and then click the "Next" button to obtain the solution of the equation.
    It supports equations that contain mathematical functions.
    Current location:Equations > Monovariate Equation > The history of univariate equation calculation > Answer
    Overview: 1 questions will be solved this time.Among them
           ☆1 equations

[ 1/1 Equation]
    Work: Find the solution of equation (x-20)(50-x-180/10) = 0 .
    Question type: Equation
    Solution:Original question:
     ( x 20)(50 x 180 ÷ 10) = 0
    Remove the bracket on the left of the equation:
     Left side of the equation = x (50 x 180 ÷ 10)20(50 x 180 ÷ 10)
                                             = x × 50 x x x × 180 ÷ 1020(50 x 180 ÷ 10)
                                             = x × 50 x x x × 1820(50 x 180 ÷ 10)
                                             = 32 x x x 20(50 x 180 ÷ 10)
                                             = 32 x x x 20 × 50 + 20 x + 20 × 180 ÷ 10
                                             = 32 x x x 1000 + 20 x + 360
                                             = 52 x x x 640
    The equation is transformed into :
     52 x x x 640 = 0

    After the equation is converted into a general formula, it is converted into:
    ( x - 20 )( x - 32 )=0
    From
        x - 20 = 0
        x - 32 = 0

    it is concluded that::
        x1=20
        x2=32
    
    There are 2 solution(s).


解一元二次方程的详细方法请参阅:《一元二次方程的解法》



Your problem has not been solved here? Please go to the Hot Problems section!





  New addition:Lenders ToolBox module(Specific location:Math OP > Lenders ToolBox ),welcome。