Mathematics
         
语言:中文    Language:English
                                Equations   
Fold
                                Unary equation
                                Multivariate equation
                                Math OP  
Unfold
                                Linear algebra      
Unfold
                                Derivative function
                                Function image
                                Hot issues
On line Solution of Monovariate Equation:
    Input any unary equation directly, and then click the "Next" button to obtain the solution of the equation.
    It supports equations that contain mathematical functions.
    Current location:Equations > Monovariate Equation > The history of univariate equation calculation > Answer
    Overview: 1 questions will be solved this time.Among them
           ☆1 equations

[ 1/1 Equation]
    Work: Find the solution of equation (50-2x)(38-2x)1260 = 0 .
    Question type: Equation
    Solution:Original question:
     (502 x )(382 x ) × 1260 = 0
    Remove the bracket on the left of the equation:
     Left side of the equation = 50(382 x ) × 12602 x (382 x ) × 1260
                                             = 63000(382 x )2520 x (382 x )
                                             = 63000 × 3863000 × 2 x 2520 x (382 x )
                                             = 2394000126000 x 2520 x (382 x )
                                             = 2394000126000 x 2520 x × 38 + 2520 x × 2 x
                                             = 2394000126000 x 95760 x + 5040 x x
                                             = 2394000221760 x + 5040 x x
    The equation is transformed into :
     2394000221760 x + 5040 x x = 0

    After the equation is converted into a general formula, it is converted into:
    ( x - 19 )( x - 25 )=0
    From
        x - 19 = 0
        x - 25 = 0

    it is concluded that::
        x1=19
        x2=25
    
    There are 2 solution(s).


解一元二次方程的详细方法请参阅:《一元二次方程的解法》



Your problem has not been solved here? Please go to the Hot Problems section!





  New addition:Lenders ToolBox module(Specific location:Math OP > Lenders ToolBox ),welcome。