Mathematics
         
语言:中文    Language:English
                                Equations   
Fold
                                Unary equation
                                Multivariate equation
                                Math OP  
Unfold
                                Linear algebra      
Unfold
                                Derivative function
                                Function image
                                Hot issues
On line Solution of Monovariate Equation:
    Input any unary equation directly, and then click the "Next" button to obtain the solution of the equation.
    It supports equations that contain mathematical functions.
    Current location:Equations > Monovariate Equation > The history of univariate equation calculation > Answer
    Overview: 1 questions will be solved this time.Among them
           ☆1 equations

[ 1/1 Equation]
    Work: Find the solution of equation (1-0.000257x)/0.000564 = (1-0.000241x)/0.000601 .
    Question type: Equation
    Solution:Original question:
     (1
257
1000000
x ) ÷
141
250000
= (1
241
1000000
x ) ÷
601
1000000
    Remove the bracket on the left of the equation:
     Left side of the equation = 1 ×
250000
141
257
1000000
x ×
250000
141
                                             =
250000
141
257
564
x
    The equation is transformed into :
     
250000
141
257
564
x = (1
241
1000000
x ) ÷
601
1000000
    Remove the bracket on the right of the equation:
     Right side of the equation = 1 ×
1000000
601
241
1000000
x ×
1000000
601
                                               =
1000000
601
241
601
x
    The equation is transformed into :
     
250000
141
257
564
x =
1000000
601
241
601
x

    Transposition :
      -
257
564
x +
241
601
x =
1000000
601
250000
141

    Combine the items on the left of the equation:
      -
18533
338964
x =
1000000
601
250000
141

    Combine the items on the right of the equation:
      -
18533
338964
x = -
9250000
84741

    By shifting the terms and changing the symbols on toth sides of the equation, we obtain :
     
9250000
84741
=
18533
338964
x

    If the left side of the equation is equal to the right side, then the right side must also be equal to the left side, that is :
     
18533
338964
x =
9250000
84741

    The coefficient of the unknown number is reduced to 1 :
      x =
9250000
84741
÷
18533
338964
        =
9250000
84741
×
338964
18533
        =
9250000
601
×
2404
18533

    We obtained :
      x =
22237000000
11138333
    This is the solution of the equation.



Your problem has not been solved here? Please go to the Hot Problems section!





  New addition:Lenders ToolBox module(Specific location:Math OP > Lenders ToolBox ),welcome。