Mathematics
         
语言:中文    Language:English
                                Equations   
Fold
                                Unary equation
                                Multivariate equation
                                Math OP  
Unfold
                                Linear algebra      
Unfold
                                Derivative function
                                Function image
                                Hot issues
On line Solution of Monovariate Equation:
    Input any unary equation directly, and then click the "Next" button to obtain the solution of the equation.
    It supports equations that contain mathematical functions.
    Current location:Equations > Monovariate Equation > The history of univariate equation calculation > Answer
    Overview: 1 questions will be solved this time.Among them
           ☆1 equations

[ 1/1 Equation]
    Work: Find the solution of equation (5-x)/19+(3.3-x)20.33 = x/0.015 .
    Question type: Equation
    Solution:Original question:
     (5 x ) ÷ 19 + (
33
10
x ) ×
2033
100
= x ÷
3
200
    Remove the bracket on the left of the equation:
     Left side of the equation = 5 ×
1
19
x ×
1
19
+ (
33
10
x ) ×
2033
100
                                             =
5
19
x ×
1
19
+ (
33
10
x ) ×
2033
100
                                             =
5
19
1
19
x +
33
10
×
2033
100
x ×
2033
100
                                             =
5
19
1
19
x +
67089
1000
x ×
2033
100
                                             =
1279691
19000
38727
1900
x
    The equation is transformed into :
     
1279691
19000
38727
1900
x = x ÷
3
200

    Transposition :
      -
38727
1900
x
200
3
x = -
1279691
19000

    Combine the items on the left of the equation:
      -
496181
5700
x = -
1279691
19000

    By shifting the terms and changing the symbols on toth sides of the equation, we obtain :
     
1279691
19000
=
496181
5700
x

    If the left side of the equation is equal to the right side, then the right side must also be equal to the left side, that is :
     
496181
5700
x =
1279691
19000

    The coefficient of the unknown number is reduced to 1 :
      x =
1279691
19000
÷
496181
5700
        =
1279691
19000
×
5700
496181
        =
182813
10
×
3
70883

    We obtained :
      x =
548439
708830
    This is the solution of the equation.

    Convert the result to decimal form :
      x = 0.773724



Your problem has not been solved here? Please go to the Hot Problems section!





  New addition:Lenders ToolBox module(Specific location:Math OP > Lenders ToolBox ),welcome。