Mathematics
         
语言:中文    Language:English
                                Equations   
Fold
                                Unary equation
                                Multivariate equation
                                Math OP  
Unfold
                                Linear algebra      
Unfold
                                Derivative function
                                Function image
                                Hot issues
On line Solution of Monovariate Equation:
    Input any unary equation directly, and then click the "Next" button to obtain the solution of the equation.
    It supports equations that contain mathematical functions.
    Current location:Equations > Monovariate Equation > The history of univariate equation calculation > Answer
    Overview: 1 questions will be solved this time.Among them
           ☆1 equations

[ 1/1 Equation]
    Work: Find the solution of equation (5-x)/19+(3.3-x)/20.33 = x/0.015 .
    Question type: Equation
    Solution:Original question:
     (5 x ) ÷ 19 + (
33
10
x ) ÷
2033
100
= x ÷
3
200
    Remove the bracket on the left of the equation:
     Left side of the equation = 5 ×
1
19
x ×
1
19
+ (
33
10
x ) ×
100
2033
                                             =
5
19
x ×
1
19
+ (
33
10
x ) ×
100
2033
                                             =
5
19
1
19
x +
33
10
×
100
2033
x ×
100
2033
                                             =
5
19
1
19
x +
330
2033
x ×
100
2033
                                             =
865
2033
207
2033
x
    The equation is transformed into :
     
865
2033
207
2033
x = x ÷
3
200

    Transposition :
      -
207
2033
x
200
3
x = -
865
2033

    Combine the items on the left of the equation:
      -
407221
6099
x = -
865
2033

    By shifting the terms and changing the symbols on toth sides of the equation, we obtain :
     
865
2033
=
407221
6099
x

    If the left side of the equation is equal to the right side, then the right side must also be equal to the left side, that is :
     
407221
6099
x =
865
2033

    The coefficient of the unknown number is reduced to 1 :
      x =
865
2033
÷
407221
6099
        =
865
2033
×
6099
407221
        =
865
107
×
321
407221

    We obtained :
      x =
277665
43572647
    This is the solution of the equation.

    By reducing fraction, we can get:
      x =
2595
407221

    Convert the result to decimal form :
      x = 0.006372



Your problem has not been solved here? Please go to the Hot Problems section!





  New addition:Lenders ToolBox module(Specific location:Math OP > Lenders ToolBox ),welcome。