Mathematics
         
语言:中文    Language:English
                                Equations   
Fold
                                Unary equation
                                Multivariate equation
                                Math OP  
Unfold
                                Linear algebra      
Unfold
                                Derivative function
                                Function image
                                Hot issues
On line Solution of Monovariate Equation:
    Input any unary equation directly, and then click the "Next" button to obtain the solution of the equation.
    It supports equations that contain mathematical functions.
    Current location:Equations > Monovariate Equation > The history of univariate equation calculation > Answer
    Overview: 1 questions will be solved this time.Among them
           ☆1 equations

[ 1/1 Equation]
    Work: Find the solution of equation (5*(76+x)+4*(14+x)+3*(10+x)+2*(1+x)+1*(6+x))/107+x = 4.7 .
    Question type: Equation
    Solution:Original question:
     (5(76 + x ) + 4(14 + x ) + 3(10 + x ) + 2(1 + x ) + 1(6 + x )) ÷ 107 + x =
47
10
    Remove the bracket on the left of the equation:
     Left side of the equation = 5(76 + x ) ×
1
107
+ 4(14 + x ) ×
1
107
+ 3(10 + x ) ×
1
107
+ 2(1 + x ) ×
1
107
                                             =
5
107
(76 + x ) +
4
107
(14 + x ) +
3
107
(10 + x ) +
2
107
(1 + x ) +
1
107
(6 + x ) + x
                                             =
5
107
× 76 +
5
107
x +
4
107
(14 + x ) +
3
107
(10 + x ) +
2
107
(1 + x ) +
1
107
(6 + x )
                                             =
380
107
+
5
107
x +
4
107
(14 + x ) +
3
107
(10 + x ) +
2
107
(1 + x ) +
1
107
(6 + x ) + x
                                             =
380
107
+
112
107
x +
4
107
(14 + x ) +
3
107
(10 + x ) +
2
107
(1 + x ) +
1
107
(6 + x )
                                             =
380
107
+
112
107
x +
4
107
× 14 +
4
107
x +
3
107
(10 + x ) +
2
107
(1 + x ) +
1
107
                                             =
380
107
+
112
107
x +
56
107
+
4
107
x +
3
107
(10 + x ) +
2
107
(1 + x ) +
1
107
(6 + x )
                                             =
436
107
+
116
107
x +
3
107
(10 + x ) +
2
107
(1 + x ) +
1
107
(6 + x )
                                             =
436
107
+
116
107
x +
3
107
× 10 +
3
107
x +
2
107
(1 + x ) +
1
107
(6 + x )
                                             =
436
107
+
116
107
x +
30
107
+
3
107
x +
2
107
(1 + x ) +
1
107
(6 + x )
                                             =
466
107
+
119
107
x +
2
107
(1 + x ) +
1
107
(6 + x )
                                             =
466
107
+
119
107
x +
2
107
× 1 +
2
107
x +
1
107
(6 + x )
                                             =
466
107
+
119
107
x +
2
107
+
2
107
x +
1
107
(6 + x )
                                             =
468
107
+
121
107
x +
1
107
(6 + x )
                                             =
468
107
+
121
107
x +
1
107
× 6 +
1
107
x
                                             =
468
107
+
121
107
x +
6
107
+
1
107
x
                                             =
474
107
+
122
107
x
    The equation is transformed into :
     
474
107
+
122
107
x =
47
10

    Transposition :
     
122
107
x =
47
10
474
107

    Combine the items on the right of the equation:
     
122
107
x =
289
1070

    The coefficient of the unknown number is reduced to 1 :
      x =
289
1070
÷
122
107
        =
289
1070
×
107
122

    We obtained :
      x =
30923
130540
    This is the solution of the equation.

    By reducing fraction, we can get:
      x =
289
1220

    Convert the result to decimal form :
      x = 0.236885



Your problem has not been solved here? Please go to the Hot Problems section!





  New addition:Lenders ToolBox module(Specific location:Math OP > Lenders ToolBox ),welcome。