Mathematics
         
语言:中文    Language:English
                                Equations   
Fold
                                Unary equation
                                Multivariate equation
                                Math OP  
Unfold
                                Linear algebra      
Unfold
                                Derivative function
                                Function image
                                Hot issues
On line Solution of Monovariate Equation:
    Input any unary equation directly, and then click the "Next" button to obtain the solution of the equation.
    It supports equations that contain mathematical functions.
    Current location:Equations > Monovariate Equation > The history of univariate equation calculation > Answer
    Overview: 1 questions will be solved this time.Among them
           ☆1 equations

[ 1/1 Equation]
    Work: Find the solution of equation (5*(76+x)+(14*4)+(10*3)+(1*2)+(6*1))/107+x = 4.7 .
    Question type: Equation
    Solution:Original question:
     (5(76 + x ) + (14 × 4) + (10 × 3) + (1 × 2) + (6 × 1)) ÷ 107 + x =
47
10
    Remove the bracket on the left of the equation:
     Left side of the equation = 5(76 + x ) ×
1
107
+ (14 × 4) ×
1
107
+ (10 × 3) ×
1
107
+ (1 × 2) ×
1
107
+ (6 × 1) ×
1
107
+ x
                                             =
5
107
(76 + x ) + (14 × 4) ×
1
107
+ (10 × 3) ×
1
107
+ (1 × 2) ×
1
107
+ (6 × 1) ×
1
107
+ x
                                             =
5
107
× 76 +
5
107
x + (14 × 4) ×
1
107
+ (10 × 3) ×
1
107
+ (1 × 2) ×
1
107
+ (6 × 1) ×
1
107
                                             =
380
107
+
5
107
x + (14 × 4) ×
1
107
+ (10 × 3) ×
1
107
+ (1 × 2) ×
1
107
+ (6 × 1) ×
1
107
+ x
                                             =
380
107
+
112
107
x + (14 × 4) ×
1
107
+ (10 × 3) ×
1
107
+ (1 × 2) ×
1
107
+ (6 × 1) ×
1
107
                                             =
380
107
+
112
107
x + 14 × 4 ×
1
107
+ (10 × 3) ×
1
107
+ (1 × 2) ×
1
107
+ (6 × 1) ×
1
107
                                             =
380
107
+
112
107
x +
56
107
+ (10 × 3) ×
1
107
+ (1 × 2) ×
1
107
+ (6 × 1) ×
1
107
                                             =
436
107
+
112
107
x + (10 × 3) ×
1
107
+ (1 × 2) ×
1
107
+ (6 × 1) ×
1
107
                                             =
436
107
+
112
107
x + 10 × 3 ×
1
107
+ (1 × 2) ×
1
107
+ (6 × 1) ×
1
107
                                             =
436
107
+
112
107
x +
30
107
+ (1 × 2) ×
1
107
+ (6 × 1) ×
1
107
                                             =
466
107
+
112
107
x + (1 × 2) ×
1
107
+ (6 × 1) ×
1
107
                                             =
466
107
+
112
107
x + 1 × 2 ×
1
107
+ (6 × 1) ×
1
107
                                             =
466
107
+
112
107
x +
2
107
+ (6 × 1) ×
1
107
                                             =
468
107
+
112
107
x + (6 × 1) ×
1
107
                                             =
468
107
+
112
107
x + 6 × 1 ×
1
107
                                             =
468
107
+
112
107
x +
6
107
                                             =
474
107
+
112
107
x
    The equation is transformed into :
     
474
107
+
112
107
x =
47
10

    Transposition :
     
112
107
x =
47
10
474
107

    Combine the items on the right of the equation:
     
112
107
x =
289
1070

    The coefficient of the unknown number is reduced to 1 :
      x =
289
1070
÷
112
107
        =
289
1070
×
107
112

    We obtained :
      x =
30923
119840
    This is the solution of the equation.

    By reducing fraction, we can get:
      x =
289
1120

    Convert the result to decimal form :
      x = 0.258036



Your problem has not been solved here? Please go to the Hot Problems section!





  New addition:Lenders ToolBox module(Specific location:Math OP > Lenders ToolBox ),welcome。