Mathematics
         
语言:中文    Language:English
                                Equations   
Fold
                                Unary equation
                                Multivariate equation
                                Math OP  
Unfold
                                Linear algebra      
Unfold
                                Derivative function
                                Function image
                                Hot issues
On line Solution of Monovariate Equation:
    Input any unary equation directly, and then click the "Next" button to obtain the solution of the equation.
    It supports equations that contain mathematical functions.
    Current location:Equations > Monovariate Equation > The history of univariate equation calculation > Answer
    Overview: 1 questions will be solved this time.Among them
           ☆1 equations

[ 1/1 Equation]
    Work: Find the solution of equation 3(16+4t)*4+(18-2t)*(-2)-4(18-2t)+2(16+4t)-2*17*4 = 0 .
    Question type: Equation
    Solution:Original question:
     3(16 + 4 t ) × 4 + (182 t )( - 2)4(182 t ) + 2(16 + 4 t )2 × 17 × 4 = 0
     Left side of the equation = 12(16 + 4 t ) + (182 t )( - 2)4(182 t ) + 2(16 + 4 t )136
    The equation is transformed into :
     12(16 + 4 t ) + (182 t )( - 2)4(182 t ) + 2(16 + 4 t )136 = 0
    Remove the bracket on the left of the equation:
     Left side of the equation = 12 × 16 + 12 × 4 t + (182 t )( - 2)4(182 t ) + 2(16 + 4 t )136
                                             = 192 + 48 t + (182 t )( - 2)4(182 t ) + 2(16 + 4 t )136
                                             = 56 + 48 t + (182 t )( - 2)4(182 t ) + 2(16 + 4 t )
                                             = 56 + 48 t + 18( - 2)2 t ( - 2)4(182 t ) + 2(16 + 4 t )
                                             = 56 + 48 t 18 × 22 t ( - 2)4(182 t ) + 2(16 + 4 t )
                                             = 56 + 48 t 362 t ( - 2)4(182 t ) + 2(16 + 4 t )
                                             = 20 + 48 t 2 t ( - 2)4(182 t ) + 2(16 + 4 t )
                                             = 20 + 48 t + 2 t × 24(182 t ) + 2(16 + 4 t )
                                             = 20 + 48 t + 4 t 4(182 t ) + 2(16 + 4 t )
                                             = 20 + 52 t 4(182 t ) + 2(16 + 4 t )
                                             = 20 + 52 t 4 × 18 + 4 × 2 t + 2(16 + 4 t )
                                             = 20 + 52 t 72 + 8 t + 2(16 + 4 t )
                                             = - 52 + 60 t + 2(16 + 4 t )
                                             = - 52 + 60 t + 2 × 16 + 2 × 4 t
                                             = - 52 + 60 t + 32 + 8 t
                                             = - 20 + 68 t
    The equation is transformed into :
      - 20 + 68 t = 0

    Transposition :
     68 t = 0 + 20

    Combine the items on the right of the equation:
     68 t = 20

    The coefficient of the unknown number is reduced to 1 :
      t = 20 ÷ 68
        = 20 ×
1
68
        = 5 ×
1
17

    We obtained :
      t =
5
17
    This is the solution of the equation.

    Convert the result to decimal form :
      t = 0.294118



Your problem has not been solved here? Please go to the Hot Problems section!





  New addition:Lenders ToolBox module(Specific location:Math OP > Lenders ToolBox ),welcome。