Mathematics
         
语言:中文    Language:English
                                Equations   
Fold
                                Unary equation
                                Multivariate equation
                                Math OP  
Unfold
                                Linear algebra      
Unfold
                                Derivative function
                                Function image
                                Hot issues
On line Solution of Monovariate Equation:
    Input any unary equation directly, and then click the "Next" button to obtain the solution of the equation.
    It supports equations that contain mathematical functions.
    Current location:Equations > Monovariate Equation > The history of univariate equation calculation > Answer
    Overview: 1 questions will be solved this time.Among them
           ☆1 equations

[ 1/1 Equation]
    Work: Find the solution of equation 900*9.8h+50000+75/359*(2-h)*20*900*2.04*2.04 = 101300 .
    Question type: Equation
    Solution:Original question:
     900 ×
49
5
h + 50000 + 75 ÷ 359 × (2 h ) × 20 × 900 ×
51
25
×
51
25
= 101300
     Left side of the equation = 8820 h + 50000 +
5618160
359
(2 h )
    The equation is transformed into :
     8820 h + 50000 +
5618160
359
(2 h ) = 101300
    Remove the bracket on the left of the equation:
     Left side of the equation = 8820 h + 50000 +
5618160
359
× 2
5618160
359
h
                                             = 8820 h + 50000 +
11236320
359
5618160
359
h
                                             = -
2451780
359
h +
29186320
359
    The equation is transformed into :
      -
2451780
359
h +
29186320
359
= 101300

    Transposition :
      -
2451780
359
h = 101300
29186320
359

    Combine the items on the right of the equation:
      -
2451780
359
h =
7180380
359

    By shifting the terms and changing the symbols on toth sides of the equation, we obtain :
      -
7180380
359
=
2451780
359
h

    If the left side of the equation is equal to the right side, then the right side must also be equal to the left side, that is :
     
2451780
359
h = -
7180380
359

    The coefficient of the unknown number is reduced to 1 :
      h = -
7180380
359
÷
2451780
359
        = -
7180380
359
×
359
2451780
        = -
39891
359
×
359
13621

    We obtained :
      h = -
14320869
4889939
    This is the solution of the equation.

    By reducing fraction, we can get:
      h = -
39891
13621

    Convert the result to decimal form :
      h = - 2.92864



Your problem has not been solved here? Please go to the Hot Problems section!





  New addition:Lenders ToolBox module(Specific location:Math OP > Lenders ToolBox ),welcome。