Mathematics
         
语言:中文    Language:English
                                Equations   
Fold
                                Unary equation
                                Multivariate equation
                                Math OP  
Unfold
                                Linear algebra      
Unfold
                                Derivative function
                                Function image
                                Hot issues
On line Solution of Monovariate Equation:
    Input any unary equation directly, and then click the "Next" button to obtain the solution of the equation.
    It supports equations that contain mathematical functions.
    Current location:Equations > Monovariate Equation > The history of univariate equation calculation > Answer
    Overview: 1 questions will be solved this time.Among them
           ☆1 equations

[ 1/1 Equation]
    Work: Find the solution of equation ((8+x)X7.5-18)/(8+x)x27.5 = 0.25 .
    Question type: Equation
    Solution:Original question:
     ((8 + x ) x ×
15
2
18) ÷ (8 + x ) × x ×
55
2
=
1
4
     Multiply both sides of the equation by:(8 + x )
     ((8 + x ) x ×
15
2
18) x ×
55
2
=
1
4
(8 + x )
    Remove a bracket on the left of the equation::
     (8 + x ) x ×
15
2
x ×
55
2
18 x ×
55
2
=
1
4
(8 + x )
    Remove a bracket on the right of the equation::
     (8 + x ) x ×
15
2
x ×
55
2
18 x ×
55
2
=
1
4
× 8 +
1
4
x
    The equation is reduced to :
     (8 + x ) x ×
825
4
x 495 x = 2 +
1
4
x
    Remove a bracket on the left of the equation:
     8 x ×
825
4
x + x x ×
825
4
x 495 x = 2 +
1
4
x
    The equation is reduced to :
     1650 x x + x x ×
825
4
x 495 x = 2 +
1
4
x

    The solution of the equation:
        x1≈-8.289527 , keep 6 decimal places
        x2≈-0.003985 , keep 6 decimal places
        x3≈0.293513 , keep 6 decimal places
    
    There are 3 solution(s).


解程的详细方法请参阅:《方程的解法》



Your problem has not been solved here? Please go to the Hot Problems section!





  New addition:Lenders ToolBox module(Specific location:Math OP > Lenders ToolBox ),welcome。