Mathematics
         
语言:中文    Language:English
                                Equations   
Fold
                                Unary equation
                                Multivariate equation
                                Math OP  
Unfold
                                Linear algebra      
Unfold
                                Derivative function
                                Function image
                                Hot issues
On line Solution of Monovariate Equation:
    Input any unary equation directly, and then click the "Next" button to obtain the solution of the equation.
    It supports equations that contain mathematical functions.
    Current location:Equations > Monovariate Equation > The history of univariate equation calculation > Answer
    Overview: 1 questions will be solved this time.Among them
           ☆1 equations

[ 1/1 Equation]
    Work: Find the solution of equation 1/x+1/(x+1)+1/(x+5) = 1/(x+8/7) .
    Question type: Equation
    Solution:Original question:
     1 ÷ x + 1 ÷ ( x + 1) + 1 ÷ ( x + 5) = 1 ÷ ( x + 8 ÷ 7)
     Multiply both sides of the equation by: x  ,  ( x + 8 ÷ 7)
     1( x + 8 ÷ 7) + 1 ÷ ( x + 1) × x ( x + 8 ÷ 7) + 1 ÷ ( x + 5) × x ( x + 8 ÷ 7) = 1 x
    Remove a bracket on the left of the equation::
     1 x + 1 × 8 ÷ 7 + 1 ÷ ( x + 1) × x ( x + 8 ÷ 7) + 1 ÷ ( x + 5) × x = 1 x
    The equation is reduced to :
     1 x +
8
7
+ 1 ÷ ( x + 1) × x ( x + 8 ÷ 7) + 1 ÷ ( x + 5) × x ( x + 8 ÷ 7) = 1 x
     Multiply both sides of the equation by:( x + 1)
     1 x ( x + 1) +
8
7
( x + 1) + 1 x ( x + 8 ÷ 7) + 1 ÷ ( x + 5) × x ( x + 8 ÷ 7) = 1 x ( x + 1)
    Remove a bracket on the left of the equation:
     1 x x + 1 x × 1 +
8
7
( x + 1) + 1 x ( x + 8 ÷ 7) + 1 = 1 x ( x + 1)
    Remove a bracket on the right of the equation::
     1 x x + 1 x × 1 +
8
7
( x + 1) + 1 x ( x + 8 ÷ 7) + 1 = 1 x x + 1 x × 1
    The equation is reduced to :
     1 x x + 1 x +
8
7
( x + 1) + 1 x ( x + 8 ÷ 7) + 1 ÷ ( x + 5) = 1 x x + 1 x
     Multiply both sides of the equation by:( x + 5)
     1 x x ( x + 5) + 1 x ( x + 5) +
8
7
( x + 1)( x + 5) + 1 x = 1 x x ( x + 5) + 1 x ( x + 5)
    Remove a bracket on the left of the equation:
     1 x x x + 1 x x × 5 + 1 x ( x + 5) +
8
7
= 1 x x ( x + 5) + 1 x ( x + 5)
    Remove a bracket on the right of the equation::
     1 x x x + 1 x x × 5 + 1 x ( x + 5) +
8
7
= 1 x x x + 1 x x × 5 + 1 x ( x + 5)
    The equation is reduced to :
     1 x x x + 5 x x + 1 x ( x + 5) +
8
7
( x + 1) = 1 x x x + 5 x x + 1 x ( x + 5)
    Remove a bracket on the left of the equation:
     1 x x x + 5 x x + 1 x x + 1 x = 1 x x x + 5 x x + 1 x ( x + 5)
    Remove a bracket on the right of the equation::
     1 x x x + 5 x x + 1 x x + 1 x = 1 x x x + 5 x x + 1 x x + 1 x
    The equation is reduced to :
     1 x x x + 5 x x + 1 x x + 5 x = 1 x x x + 5 x x + 1 x x + 5 x
    Remove a bracket on the left of the equation:
     1 x x x + 5 x x + 1 x x + 5 x = 1 x x x + 5 x x + 1 x x + 5 x
    The equation is reduced to :
     1 x x x + 5 x x + 1 x x + 5 x = 1 x x x + 5 x x + 1 x x + 5 x
    Remove a bracket on the left of the equation:
     1 x x x + 5 x x + 1 x x + 5 x = 1 x x x + 5 x x + 1 x x + 5 x
    The equation is reduced to :
     1 x x x + 5 x x + 1 x x + 5 x = 1 x x x + 5 x x + 1 x x + 5 x
    The equation is reduced to :
     1 x x x + 5 x x + 1 x x +
75
7
x = 1 x x x + 5 x x + 1 x x + 5 x
    Remove a bracket on the left of the equation:
     1 x x x + 5 x x + 1 x x +
75
7
x = 1 x x x + 5 x x + 1 x x + 5 x
    The equation is reduced to :
     1 x x x + 5 x x + 1 x x +
75
7
x = 1 x x x + 5 x x + 1 x x + 5 x

    After the equation is converted into a general formula, it is converted into:
    ( x + 2 )( x + 2 )( 7x +5 )=0
    From
        x + 2 = 0
        x + 2 = 0
        7x +5 = 0

    it is concluded that::
        x1=-2
        x2=-2
        x3=-
5
7
    
    There are 3 solution(s).


解程的详细方法请参阅:《方程的解法》



Your problem has not been solved here? Please go to the Hot Problems section!





  New addition:Lenders ToolBox module(Specific location:Math OP > Lenders ToolBox ),welcome。