| ( | 185 | + | 403 | ) | ÷ | 31 | × | x | + | 345 2 | ÷ | 31 | × | ( | x | + | 15 | ) | + | 93 | ÷ | 31 | × | ( | x | + | 30 | ) | = | 1720 |
| Left side of the equation = | ( | 185 | + | 403 | ) | × | 1 31 | x | + | 345 62 | ( | x | + | 15 | ) | + | 3 | ( | x | + | 30 | ) |
| ( | 185 | + | 403 | ) | × | 1 31 | x | + | 345 62 | ( | x | + | 15 | ) | + | 3 | ( | x | + | 30 | ) | = | 1720 |
| Left side of the equation = | 185 | × | 1 31 | x | + | 403 | × | 1 31 | x | + | 345 62 | ( | x | + | 15 | ) | + | 3 | ( | x | + | 30 | ) |
| = | 185 31 | x | + | 13 | x | + | 345 62 | ( | x | + | 15 | ) | + | 3 | ( | x | + | 30 | ) |
| = | 588 31 | x | + | 345 62 | ( | x | + | 15 | ) | + | 3 | ( | x | + | 30 | ) |
| = | 588 31 | x | + | 345 62 | x | + | 345 62 | × | 15 | + | 3 | ( | x | + | 30 | ) |
| = | 588 31 | x | + | 345 62 | x | + | 5175 62 | + | 3 | ( | x | + | 30 | ) |
| = | 1521 62 | x | + | 5175 62 | + | 3 | ( | x | + | 30 | ) |
| = | 1521 62 | x | + | 5175 62 | + | 3 | x | + | 3 | × | 30 |
| = | 1521 62 | x | + | 5175 62 | + | 3 | x | + | 90 |
| = | 1707 62 | x | + | 10755 62 |
1707 62 | x | + | 10755 62 | = | 1720 |
1707 62 | x | = | 1720 | − | 10755 62 |
1707 62 | x | = | 95885 62 |
| x | = | 95885 62 | ÷ | 1707 62 |
| = | 95885 62 | × | 62 1707 |
| = | 95885 | × | 1 1707 |
| x | = | 95885 1707 |
| x | = | 56.171646 |