| ( | 157 | + | 667 2 | ) | ÷ | 31 | × | x | + | 217 | ÷ | 31 | × | ( | x | + | 15 | ) | + | 124 | ÷ | 31 | × | ( | x | + | 30 | ) | = | 2611 |
| Left side of the equation = | ( | 157 | + | 667 2 | ) | × | 1 31 | x | + | 7 | ( | x | + | 15 | ) | + | 4 | ( | x | + | 30 | ) |
| ( | 157 | + | 667 2 | ) | × | 1 31 | x | + | 7 | ( | x | + | 15 | ) | + | 4 | ( | x | + | 30 | ) | = | 2611 |
| Left side of the equation = | 157 | × | 1 31 | x | + | 667 2 | × | 1 31 | x | + | 7 | ( | x | + | 15 | ) | + | 4 | ( | x | + | 30 | ) |
| = | 157 31 | x | + | 667 62 | x | + | 7 | ( | x | + | 15 | ) | + | 4 | ( | x | + | 30 | ) |
| = | 981 62 | x | + | 7 | ( | x | + | 15 | ) | + | 4 | ( | x | + | 30 | ) |
| = | 981 62 | x | + | 7 | x | + | 7 | × | 15 | + | 4 | ( | x | + | 30 | ) |
| = | 981 62 | x | + | 7 | x | + | 105 | + | 4 | ( | x | + | 30 | ) |
| = | 1415 62 | x | + | 105 | + | 4 | ( | x | + | 30 | ) |
| = | 1415 62 | x | + | 105 | + | 4 | x | + | 4 | × | 30 |
| = | 1415 62 | x | + | 105 | + | 4 | x | + | 120 |
| = | 1663 62 | x | + | 225 |
1663 62 | x | + | 225 | = | 2611 |
1663 62 | x | = | 2611 | − | 225 |
1663 62 | x | = | 2386 |
| x | = | 2386 | ÷ | 1663 62 |
| = | 2386 | × | 62 1663 |
| x | = | 147932 1663 |
| x | = | 88.954901 |