Mathematics
         
语言:中文    Language:English
                                Equations   
Fold
                                Unary equation
                                Multivariate equation
                                Math OP  
Unfold
                                Linear algebra      
Unfold
                                Derivative function
                                Function image
                                Hot issues
On line Solution of Monovariate Equation:
    Input any unary equation directly, and then click the "Next" button to obtain the solution of the equation.
    It supports equations that contain mathematical functions.
    Current location:Equations > Monovariate Equation > The history of univariate equation calculation > Answer
    Overview: 1 questions will be solved this time.Among them
           ☆1 equations

[ 1/1 Equation]
    Work: Find the solution of equation (1.667*12.5*0.4*X)/(1-1.667*12.5*0.4*X) = 0.3 .
    Question type: Equation
    Solution:Original question:
     (
1667
1000
×
25
2
×
2
5
X ) ÷ (1
1667
1000
×
25
2
×
2
5
X ) =
3
10
     Multiply both sides of the equation by:(1
1667
1000
×
25
2
×
2
5
X )
     (
1667
1000
×
25
2
×
2
5
X ) =
3
10
(1
1667
1000
×
25
2
×
2
5
X )
    Remove a bracket on the left of the equation::
     
1667
1000
×
25
2
×
2
5
X =
3
10
(1
1667
1000
×
25
2
×
2
5
X )
    Remove a bracket on the right of the equation::
     
1667
1000
×
25
2
×
2
5
X =
3
10
× 1
3
10
×
1667
1000
×
25
2
×
2
5
X
    The equation is reduced to :
     
1667
200
X =
3
10
5001
2000
X

    Transposition :
     
1667
200
X +
5001
2000
X =
3
10

    Combine the items on the left of the equation:
     
21671
2000
X =
3
10

    The coefficient of the unknown number is reduced to 1 :
      X =
3
10
÷
21671
2000
        =
3
10
×
2000
21671
        = 3 ×
200
21671

    We obtained :
      X =
600
21671
    This is the solution of the equation.

    Convert the result to decimal form :
      X = 0.027687



Your problem has not been solved here? Please go to the Hot Problems section!





  New addition:Lenders ToolBox module(Specific location:Math OP > Lenders ToolBox ),welcome。