Mathematics
         
语言:中文    Language:English
                                Equations   
Fold
                                Unary equation
                                Multivariate equation
                                Math OP  
Unfold
                                Linear algebra      
Unfold
                                Derivative function
                                Function image
                                Hot issues
On line Solution of Monovariate Equation:
    Input any unary equation directly, and then click the "Next" button to obtain the solution of the equation.
    It supports equations that contain mathematical functions.
    Current location:Equations > Monovariate Equation > The history of univariate equation calculation > Answer
    Overview: 1 questions will be solved this time.Among them
           ☆1 equations

[ 1/1 Equation]
    Work: Find the solution of equation 5+(x*1.05+5)+0.15*x+(0.10*x*0.1666) = 108.76 .
    Question type: Equation
    Solution:Original question:
     5 + ( x ×
21
20
+ 5) +
3
20
x + (
1
10
x ×
833
5000
) =
2719
25
    Remove the bracket on the left of the equation:
     Left side of the equation = 5 + x ×
21
20
+ 5 +
3
20
x + (
1
10
x ×
833
5000
)
                                             = 10 +
6
5
x + (
1
10
x ×
833
5000
)
                                             = 10 +
6
5
x +
1
10
x ×
833
5000
                                             = 10 +
6
5
x +
833
50000
x
                                             = 10 +
60833
50000
x
    The equation is transformed into :
     10 +
60833
50000
x =
2719
25

    Transposition :
     
60833
50000
x =
2719
25
10

    Combine the items on the right of the equation:
     
60833
50000
x =
2469
25

    The coefficient of the unknown number is reduced to 1 :
      x =
2469
25
÷
60833
50000
        =
2469
25
×
50000
60833
        = 2469 ×
2000
60833

    We obtained :
      x =
4938000
60833
    This is the solution of the equation.

    Convert the result to decimal form :
      x = 81.173048



Your problem has not been solved here? Please go to the Hot Problems section!





  New addition:Lenders ToolBox module(Specific location:Math OP > Lenders ToolBox ),welcome。