Mathematics
         
语言:中文    Language:English
                                Equations   
Fold
                                Unary equation
                                Multivariate equation
                                Math OP  
Unfold
                                Linear algebra      
Unfold
                                Derivative function
                                Function image
                                Hot issues
On line Solution of Monovariate Equation:
    Input any unary equation directly, and then click the "Next" button to obtain the solution of the equation.
    It supports equations that contain mathematical functions.
    Current location:Equations > Monovariate Equation > The history of univariate equation calculation > Answer
    Overview: 1 questions will be solved this time.Among them
           ☆1 equations

[ 1/1 Equation]
    Work: Find the solution of equation 13+(x*1.02+2.5)+0.15*x+(13*0.1655) = 164 .
    Question type: Equation
    Solution:Original question:
     13 + ( x ×
51
50
+
5
2
) +
3
20
x + (13 ×
331
2000
) = 164
    Remove the bracket on the left of the equation:
     Left side of the equation = 13 + x ×
51
50
+
5
2
+
3
20
x + (13 ×
331
2000
)
                                             =
31
2
+
117
100
x + (13 ×
331
2000
)
                                             =
31
2
+
117
100
x + 13 ×
331
2000
                                             =
31
2
+
117
100
x +
4303
2000
                                             =
35303
2000
+
117
100
x
    The equation is transformed into :
     
35303
2000
+
117
100
x = 164

    Transposition :
     
117
100
x = 164
35303
2000

    Combine the items on the right of the equation:
     
117
100
x =
292697
2000

    The coefficient of the unknown number is reduced to 1 :
      x =
292697
2000
÷
117
100
        =
292697
2000
×
100
117
        =
292697
20
×
1
117

    We obtained :
      x =
292697
2340
    This is the solution of the equation.

    Convert the result to decimal form :
      x = 125.084188



Your problem has not been solved here? Please go to the Hot Problems section!





  New addition:Lenders ToolBox module(Specific location:Math OP > Lenders ToolBox ),welcome。