Mathematics
         
语言:中文    Language:English
                                Equations   
Fold
                                Unary equation
                                Multivariate equation
                                Math OP  
Unfold
                                Linear algebra      
Unfold
                                Derivative function
                                Function image
                                Hot issues
On line Solution of Monovariate Equation:
    Input any unary equation directly, and then click the "Next" button to obtain the solution of the equation.
    It supports equations that contain mathematical functions.
    Current location:Equations > Monovariate Equation > The history of univariate equation calculation > Answer
    Overview: 1 questions will be solved this time.Among them
           ☆1 equations

[ 1/1 Equation]
    Work: Find the solution of equation (149+120+225)/30*x+120/30*(x+15)+90/30*(x+30) = 972 .
    Question type: Equation
    Solution:Original question:
     (149 + 120 + 225) ÷ 30 × x + 120 ÷ 30 × ( x + 15) + 90 ÷ 30 × ( x + 30) = 972
     Left side of the equation = (149 + 120 + 225) ×
1
30
x + 4( x + 15) + 3( x + 30)
    The equation is transformed into :
     (149 + 120 + 225) ×
1
30
x + 4( x + 15) + 3( x + 30) = 972
    Remove the bracket on the left of the equation:
     Left side of the equation = 149 ×
1
30
x + 120 ×
1
30
x + 225 ×
1
30
x + 4( x + 15) + 3
                                             =
149
30
x + 4 x +
15
2
x + 4( x + 15) + 3( x + 30)
                                             =
247
15
x + 4( x + 15) + 3( x + 30)
                                             =
247
15
x + 4 x + 4 × 15 + 3( x + 30)
                                             =
247
15
x + 4 x + 60 + 3( x + 30)
                                             =
307
15
x + 60 + 3( x + 30)
                                             =
307
15
x + 60 + 3 x + 3 × 30
                                             =
307
15
x + 60 + 3 x + 90
                                             =
352
15
x + 150
    The equation is transformed into :
     
352
15
x + 150 = 972

    Transposition :
     
352
15
x = 972150

    Combine the items on the right of the equation:
     
352
15
x = 822

    The coefficient of the unknown number is reduced to 1 :
      x = 822 ÷
352
15
        = 822 ×
15
352
        = 411 ×
15
176

    We obtained :
      x =
6165
176
    This is the solution of the equation.

    Convert the result to decimal form :
      x = 35.028409



Your problem has not been solved here? Please go to the Hot Problems section!





  New addition:Lenders ToolBox module(Specific location:Math OP > Lenders ToolBox ),welcome。